
A Fast Approximation Algorithm

for the Subset-Sum Problem

Bartosz Przydatek∗

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213, USA

e-mail: bartosz@cs.cmu.edu

April 15, 2002

Abstract

The subset-sum problem (SSP) is defined as follows: given a positive integer bound and
a set of n positive integers find a subset whose sum is closest to, but not greater than, the
bound. We present a randomized approximation algorithm for this problem with linear
space complexity and time complexity of O(n log n). Experiments with random uniformly-
distributed instances of SSP show that our algorithm outperforms, both in running time
and average error, Martello & Toth’s (1984) quadratic greedy search, whose time complexity
is O(n2).

We propose conjectures on the expected error of our algorithm for uniformly-distributed
instances of SSP and provide some analytical arguments justifying these conjectures. We
present also results of numerous tests.

Keywords: subset-sum problem, approximation algorithm, randomized algorithm, local
search

1 Introduction

The subset-sum problem (SSP) is a special case of the knapsack problem and is defined as
follows: given a set1 of positive integers {a1, . . . , an}, n ≥ 1, and a positive integer B (the
bound), find a subset of the ai’s such that their sum is as close as possible to B, without
exceeding B.

This problem is NP-hard (see e.g. (Garey & Johnson 1979)), therefore it is very unlikely that
there exists a polynomial time algorithm for finding optimal solutions for arbitrary instances.
In practice however one is often satisfied with an approximate, sub-optimal solution, which can
be found quite efficiently (i.e. in polynomial time).

We present a new, randomized approximation algorithm for the SSP which runs in O(n log n)
time using O(n) space. Tests with random uniformly-distributed instances of SSP show that
our algorithm performs significantly better than the best algorithms known so far.

∗Work done while the author was with ETH Zurich, Switzerland
1The considered sets are actually multi-sets since the numbers ai do not have to be distinct.

1

1.1 An Alternative Formulation of the SSP and Some Notation

The subset-sum problem can be defined equivalently as: given [a1, . . . , an] ∈ N
n and B ∈ N,

find a vector x = [x1, . . . , xn], with xi ∈ {0, 1}, i = 1, . . . , n, which

maximizes

n∑

i=1

aixi

subject to

n∑

i=1

aixi ≤ B .

In this case a number ai is in the solution subset if and only if xi is equal 1, and the vector
x = [x1, . . . , xn] can be interpreted as a representation of the solution subset.

Let P denote an instance of SSP, S∗(P) a subset of ai’s constituting an optimal solution of
P and V∗(P) its value, i.e. the sum of the numbers belonging to S∗(P). Furthermore let SA(P)
and VA(P) denote the analogous quantities obtained when a heuristic algorithm A is applied
to P. The worst-case performance ratio of algorithm A is the largest real number rwc(A), such
that

rwc(A) ≤ VA(P)

V∗(P)
, for all P .

For a solution x=[x1, . . . , xn] of the problem P the absolute error δ(x) of x is defined as

δ(x) = V∗(P) −
n∑

i=1

xiai ,

and the relative error ε(x) as

ε(x) =
δ(x)

V∗(P)
.

An approximation algorithm A is said to have a relative error bound ε if every solution x

returned by A for any given problem P fulfills

ε(x) ≤ ε .

An approximation scheme for an optimization problem is an approximation algorithm that
takes as input not only an instance of the problem but also a value ε > 0. For any fixed ε the
scheme is an approximation algorithm with relative error bound ε.

A polynomial-time approximation scheme is an approximation scheme which for any fixed
ε > 0 runs in time polynomial in the input size n.

An approximation scheme is a fully polynomial-time approximation scheme if its running
time is polynomial both in 1/ε and in the input size n, where ε is the relative error bound of
the scheme.

Finally, the density d(P) of a problem P is defined as

d(P) =
n

log2 max1≤i≤n ai

.

2

2 The Best Known Approximation Algorithms

This section surveys some approximation algorithms for SSP found in the literature, including
the best algorithms currently available.

2.1 Greedy Methods

The standard greedy algorithm G for solving the SSP starts with an empty solution-subset
and examines the numbers ai in the non-increasing order of their values. Each considered ai

is inserted into the current solution if and only if it is smaller than the difference between B
and the sum of the current solution. Its time complexity, clearly dominated by the sorting
operation, is O(n log n) and the space required is O(n). The worst-case performance ratio
rwc(G) is equal to 1

2 .

If in the greedy algorithm G the numbers ai are examined in random order, i.e. no sorting
is performed, the running time reduces to O(n) and the resulting randomized greedy algorithm
RG gives often surprisingly good results (see (Tinhofer & Schreck 1986) and Section 5). Since
RG is a randomized algorithm its result is not deterministic and two independent runs on the
same instance of SSP can yield different solutions. To reduce the probability of an “unlucky”
solution, whose error is significantly larger than the expected error, one can perform a few
independent trials of RG on the given instance and finally return the best solution. Such an
algorithm with t trials is denoted by RG(t).

Martello & Toth (1984) presented another greedy method, a quadratic greedy (QG) algo-
rithm, which works as follows: perform the basic greedy algorithm G n times: first on all the
numbers, then on all the numbers except the largest one, next on all except the two largest,
and so on, and return the best solution. The running time of QG is clearly O(n2), its space
complexity is O(n) and rwc(QG)=3

4 .

Kellerer, Mansini & Speranza (1998) proposed two linear algorithms with rwc=
3
4 and rwc=

4
5 .

For uniformly distributed instances of SSP their algorithm gives results similar to RG(40), which
is also linear (cf. (Kellerer et al. 1998) and Section 5).

2.2 Approximation Schemes

Approximation schemes are preferred over approximation algorithms with a constant relative
error bound, since they offer a trade-off between the computation time and the quality of the
approximation, i.e. they can achieve increasingly smaller relative error bounds by using more
and more time and/or space.

There exist fully polynomial approximation schemes for the SSP (e.g. (Ibarra & Kim 1975)),
which however either require a large amount of space and become infeasible for relatively small
n, or are in practice outperformed by the best known polynomial approximation schemes
(Martello & Toth 1985).

Martello & Toth (1984) proposed a polynomial approximation scheme MT(s), s ≥ 2, with
time complexity O(ns) and space complexity O(n), which for s ≥ 3 has rwc(MT(s)) ≥ (s +
3)/(s + 4) (MT(2) is equivalent to QG). The basic idea of MT(s) is to consider all subsets of
size at most s − 2, and to try to extend each of them to an approximate solution, using the
approach of QG on the remaining subproblem.

Soma, Zinober, Yanasse & Harley (1995) developed a variation of the MT scheme, denoted
by PS(s, v), s ≥ 2, v ≥ 1. PS(s, v) can be theoretically two times slower than MT(s) and

3

gives the same maximum error, but practically is as fast as MT(s) and produces on the average
slightly smaller errors (cf. Figure 2 in Section 5 and (Soma et al. 1995)). As in the case of MT,
for s=2 algorithm PS is equivalent to the quadratic greedy algorithm QG.

3 A New Fast Algorithm

Although both MT(s) and PS(s, v) run in polynomial time, already their simplest and fastest
versions, i.e. MT(2) resp. PS(2, 1), are equivalent to QG and hence have time complexity
O(n2). This is considerably worse than O(n log n) achieved by the greedy algorithm G, which
however produces significantly larger errors.

The proposed new solution method for the SSP is a randomized algorithm called “Ran-
domized Greedy with Local Improvement” (RGLI), whose time complexity is O(n log n), the
space complexity is O(n), and which on average produces much better solutions than G or QG.
One drawback of the algorithm RGLI is that it does not generalize easily to create a polynomial
approximation scheme.

3.1 The Algorithm

The new algorithm, presented on Figure 1, consists of one or more independent trials, each
being a composition of two phases. In each trial a new solution is found, and the solution
returned by the algorithm is the best solution from all the trials. Test runs (cf. Section 5.3)
show that the maximal number of trials can be set to a small constant (∼ 50), independently
of n and of the magnitude of the numbers. The algorithm consisting of t independent trials of
RGLI is denoted by RGLI(t).

In the first phase of a trial (Figure 1, lines 3–9) we choose randomly a solution vector x,
which is valid, i.e. it does not exceed the bound B, and which is maximal, i.e. for which adding
any still available number aj would exceed the bound B. The first phase can be realized by
a random greedy approach, i.e. starting with an empty solution subset (x = [0, . . . , 0]), the
numbers ai are examined in random order and each considered ai is inserted into the current
solution if and only if it is smaller than the difference between B and the sum of the current
solution.

The second phase (lines 10–23) is a local improvement : we examine all the numbers de-
termined by the solution vector x found in the first phase, and for each considered number ai

(with xi = 1) we search for the largest number not in the current solution, which would reduce
the error δ(x) when taken into the solution instead of ai. If we find such a number, we replace
ai with it and proceed with the next number in the solution.

After the second phase the improved solution is compared with the best solution found so
far, and, if appropriate, the best solution is updated (lines 24–27).

Note that the first phase is equivalent to the randomized greedy algorithm RG, which, as
shown by Tinhofer & Schreck (1986), gives very good results for so called bounded subset-sum
problems. The second phase is similar to a heuristic of Balas & Zemel (1980), who used it
to derive an exact integer solution of a so called approximate core knapsack problem from an
optimal (fractional) solution of a linear program associated with the problem. As we will see
later, this mixture of both phases gives remarkably good results.

4

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Input : positive integer numbers a1, . . . , an, B
Output : a solution vector [x1, . . . , xn]

xbest := [0, . . . , 0];
for trial:=1 to (max-number-of-trials) do

// first phase: randomized selection
x := [0, . . . , 0];
for each i ∈R {1, . . . , n} do // in random order

if (ai ≤ δ(x)) then // δ(x) is the absolute error of the solution x

xi:= 1;
fi;

od;
// second phase: local improvement
I := {j : xj = 1};
for each i ∈R I do // in random order

if (δ(x) = 0) then

break; // quit the inner “ for each” loop
fi;
let T denote the set of valid replacements for ai,
i.e. T = {al : xl = 0 ∧ 0 < (al − ai) ≤ δ(x)}
if (T is not empty) then

k:= index, such that ak=max(T)
xk:= 1;
xi:= 0;

fi;
od;
// xbest update
if (δ(x) < δ(xbest)) then

xbest:= x;
fi;
if (δ(xbest) = 0) then

break; // quit the outer “ for” loop
fi;

od;
return xbest;

Figure 1: The new randomized algorithm (RGLI) for the subset-sum problem

4 Analysis of the Algorithm RGLI(t)

4.1 Time and Space Complexity

The running time of the first phase is linear since we consider each number exactly once. The
random examination-order can be achieved by generating a random permutation of n elements,
which also takes linear time (see e.g. (Reingold, Nievergelt & Deo 1977)).

5

In the second phase we search at most O(n) times for a number among at most O(n)
numbers, which are not in the current solution. If we sort these numbers (in time O(n log n)),
each search can be executed in time O(log n) (binary search), so the time complexity of the
second phase is bounded by the O(n log n). It follows that the total running time of the
algorithm RGLI is bounded by O((max-number-of-trials) · n log n). If the number of trials is
constant we obtain an O(n log n)-algorithm.

The space complexity of the algorithm is clearly linear.

4.2 Performance Analysis

In this section we estimate the quality of approximate solutions found by the algorithm RGLI(1).
Assume that the numbers ai are uniformly distributed over an interval [1..M], where M is a
constant. We are interested in the expected error of a solution found by RGLI(1).

Note that the first phase of the algorithm determines the size of the solution set, i.e. the
number of numbers chosen. The second phase replaces some numbers of the solution by other
numbers, while keeping the size of the solution set constant. Therefore we can split the analysis
into three parts:

1. estimating the expected size of the solution set

2. estimating the expected (absolute) error of the random solution chosen in the first phase

3. estimating the expected (absolute) error of the improved solution after the second phase.

Since the numbers ai are uniformly distributed over an interval [1..M], the first phase of
the algorithm is equivalent to starting with an amount B of free space and repeating n times
the following random experiment A:

Experiment A: let i denote the current repetition of the experiment; choose a number αi

uniform-randomly from the interval [1..M] and accept it if it still fits into the remaining
free space, reject otherwise; “accepting” reduces the amount of free space by αi and
“rejecting” leaves the free space unaltered.

The expected size of the accepted set2 after n repetitions is equal to the expected number of
ai’s chosen in the first phase of the algorithm RGLI. Furthermore, the expected remaining free
space after n repetitions is equal to the expected error of the solution found in the RGLI’s first
phase. Therefore we can handle the first two parts of the performance analysis by considering
successive repetitions of the experiment A.

Let εk(B) denote the expected amount of free space, and ηk(B) the expected size of the
accepted set after k repetitions of the experiment A for a given value of B. We are interested in
the expected error and the expected size of the solution set after the first phase, i.e. we would
like to estimate the values of εn(B) and ηn(B).

If in an experiment A the free space is greater than M, any chosen number αi will be
surely accepted. If the free space is not greater than M, αi will be accepted if and only if it is
not greater than the free space. Since the picked numbers αi are uniformly distributed in the

2“Accepted set” is the (multi-) set of accepted numbers αi.

6

interval [1..M], the probability of picking any particular number is equal to 1/M , which leads
to the following recursive formula for the expected amount of free space, εk(B):

εk(B) =

B∑

i=1

1

M
εk−1(B − i) +

M∑

i=B+1

1

M
εk−1(B) 1 ≤ B ≤ M

M∑

i=1

1

M
εk−1(B − i) B > M

(1)

with εk(0) = 0, ε0(B) = B, for all k and B.

Analogously we can derive a recursive formula for the expected size of the accepted set, ηk(B):

ηk(B) =

B∑

i=1

1

M
(1 + ηk−1(B − i)) +

M∑

i=B+1

1

M
ηk−1(B) 1 ≤ B ≤ M

M∑

i=1

1

M
(1 + ηk−1(B − i)) B > M

(2)

with ηk(0) = 0, η0(B) = 0, for all k and B.

4.2.1 Estimating εk(B) and ηk(B) for B ≤ M .

For B ≤ M the recurrences (1) and (2) lead to the following lemma, whose proof is presented
in Appendix A.1.

Lemma 4.1 For every subset-sum problem with k input numbers uniformly distributed over
[1..M], and a bound B ≤ M with M -B=O(M), the first phase of the algorithm RGLI(1) finds
a solution set, whose expected relative error εk(B) is given by

εk(B) =
M

k + 1
+ O(1) ,

and the expected number of numbers in the solution ηk(B) by

ηk(B) = ln k + O(1) .

4.2.2 Estimating εk(B) and ηk(B) for Arbitrary B.

It seems that rigorous derivation of meaningful estimations of ηn(B) and εn(B) for arbitrary
B > M is a difficult task. However with a help of simple probabilistic arguments and using
Lemma 4.1 we can find some plausible bounds.

Consider again the first phase of the algorithm as a series of experiments A. If B is much
lager than M then a few first repetitions of A are always accepting — until the free space is less
than M . Hence we can estimate the expected size of the accepted set ηn(B) by first estimating
the number ñ(B) of repetitions of A which occur until the free space reaches M . Then we
add an estimation of ηn−ñ(B)(M) to it using Lemma 4.1 (we neglect here “pathological” cases

7

when ñ(B) ≥ n). Similarly, we can estimate the expected error after the first phase εn(B) by
εn−ñ(B)(M).

We interpret αi as a random variable denoting the outcome of the uniform-selection of a
number from the interval [1..M] during the i-th experiment A. Let Ak be equal to the sum
α1 + · · · + αk. The expected values and variances of αi and Ak are given by

E [αi] =
M + 1

2
(3)

V [αi] =
(M + 1)(M − 1)

12
(4)

E [Ak] =
k(M + 1)

2
(5)

V [Ak] =
k(M + 1)(M − 1)

12
(6)

The value of ñ(B) can be estimated by the number k of repetitions of experiment A, such
that the expected sum of all randomly selected αi’s, i.e. E [Ak], is equal to B − M . From (5)
we obtain the following equation for k (and hence an estimation of ñ(B), with an error to be
specified below)

k(M + 1)

2
= B − M .

Therefore we get

ñ(B) ≈ k =
2(B − M)

M + 1
=

2B

M + 1
+ O(1) . (7)

To justify the above reasoning we show that Ak is indeed asymptotically close to E [Ak] with
high probability. More precisely, we prove that the probability Prob (|Ak −E [Ak] | < cM) for
some small value c � k is big, or equivalently that the probability Prob (|Ak −E [Ak] | ≥ cM)
is small.

Using Hoeffding’s inequality (Hoeffding 1963) we get

Prob (Ak −E [Ak] ≥ cM) ≤ exp

(

− 2(cM)2

k(M − 1)2

)

≤ exp

(

−2c2

k

)

,

and analogously for Prob (Ak −E [Ak] ≤ −cM):

Prob (Ak −E [Ak] ≤ −cM) ≤ exp

(

−2c2

k

)

.

8

Hence for c =
√

k ln k we obtain

Prob
(

|Ak −E [Ak] | ≥
√

k ln kM
)

≤ 2

k2
,

which shows that that the probability Prob
(

|Ak −E [Ak] | ≥
√

k ln kM
)

goes to zero if k goes

to infinity. It follows that equation (7) provides asymptotically a good approximation for ñ(B),
which can be restated more precisely as

ñ(B) = k + O(
√

k ln k) with k =
2B

M + 1
+ O(1) .

Therefore, the above arguments and Lemma 4.1 allow us to consider the following expres-
sions as good approximations of ηn(B) and εn(B)

ηn(B) = ñ(B) + ηn−ñ(B)(M) =
2B

M + 1
+ ln

(

n − 2B

M + 1

)

(8)

εn(B) = εn−ñ(B)(M) =
M2

nM − 2B
. (9)

Recall that the first phase of RGLI is equivalent to the randomized greedy algorithm RG.
Let B = βnM , where β is fixed, 0 < β < 1

2 . Assuming that (9) is exact we get the following
estimations of the expected absolute and relative errors of RG(1)

δRG =
M

n(1 − 2β)

εRG =
M

n(1 − 2β)

1

βnM
=

1

n2

1

β(1 − 2β)
,

and the following conjecture

Conjecture 4.1 For every subset-sum problem with n input numbers uniformly distributed
over [1..M], and a bound B = βnM with a fixed β, 0 < β < 1

2 , the expected relative error of a
solution found by the algorithm RG is proportional to 1

n2 .

4.2.3 Estimating the Final Expected Error

In the light of difficulties in the derivation of a meaningful expression for the expected error
after the first phase of RGLI, it seems that the estimation of the final expected error is even
harder. However, under some suitable assumptions specified below, it is possible to get some
insight into RGLI’s performance and to suggest a plausible explanation of RGLI’s experimental
behavior.

Let k be the size of the set accepted in the first phase, and let l = n − k. Recall that the
second phase consists of k “improvement” steps — one step per accepted number.

Assume that after the first phase the two following conditions are fulfilled:

1. all k accepted numbers are uniformly distributed in the interval [1..M]

2. all l not accepted numbers are also uniformly distributed in the interval [1..M]

9

The two assumptions seem to be well justified in our setting: As shown in previous sec-
tions, both sets of accepted and rejected numbers contain on the average Θ(n) numbers, and
the uniform distribution of these numbers is only slightly destroyed by the O(lnn) successful
experiments A, which take place after the available free space has been reduced to M .

From the above assumptions it follows that for each number as accepted in the first phase
and for each b > 0, the probability that a number ar rejected in the first phase lies in an interval
I = [(as + 1)..(as + b)] is equal to b

M
(we neglect the pathological cases, when as + b > M).

Note that if b is an error of the solution after the first phase, then every number ar ∈ I is a
potential replacement for the number as during the second phase.

Let aji
be an accepted number considered in the i-th improvement step and bi a random

variable denoting the error of the solution before the i-th improvement. We have clearly
E [b1]=εn(B).

The i-th improvement step is successful if and only if at least one of the l candidate-numbers
is in the interval Ii = [(aji

+1)..(aji
+bi)]. Let pi be the probability, that none of the l numbers

is in the interval Ii, i.e.

pi =

(

1 − bi

M

)l

.

Furthermore, for all i ≥ 1 we have

E [bi+1| bi] = pibi + (1 − pi)
bi

2

=
bi

2
(1 + pi)

=
bi

2

(

1 +

(

1 − bi

M

)l
)

≤ bi −
b2
i

2

l

M
+

(
l
2

)
b3
i

2M2
.

Since bi ≤ b1 for all i ≥ 1, it follows

E [bi+1| bi] ≤ bi − b2
i

l

2M
+ b2

i

l2

4M2
b1 .

Assuming that b1 is a constant equal to εn(B) and having b1 ≤ M
l
, as follows from (20) and

(9), we get further

E [bi+1] = E [E [bi+1| bi]]

≤ E

[

bi − b2
i

(
l

2M
− l2

4M2
b1

)]

≤ E [bi] −E
[
b2
i

] l

4M

≤ E [bi] −E [bi]
2 l

4M

The last of above inequalities leads to the following lemma, whose proof is presented in Ap-
pendix A.2.

10

Lemma 4.2 Let γ = l
4M

. Under the two assumptions about the uniform distribution of ac-
cepted and rejected numbers, for b1 = εn(B) ≤ M

l
and for all i ≥ 1

E [bi] ≤
2

iγ
.

Lemma 4.2 gives us the following bound for E [bi]

E [bi] ≤
8M

l

1

i
. (10)

Let B = βnM , for some constant β, 0 < β < 1
2 . Then assuming validity of (8) and (9) the

above definitions lead to

k = 2βn + ln (n(1 − 2β)) = 2βn + O(lnn) (11)

l = n(1 − 2β) + O(lnn) (12)

b1 =
M

n(1 − 2β)
. (13)

From (10) and (11)-(13), neglecting the O(lnn)-terms, we obtain estimations on the expected
absolute and relative errors of RGLI(1)

δRGLI ≤ E [bk] ≤
8M

n(1 − 2β)

1

2βn
=

1

n2

4M

β(1 − 2β)
(14)

εRGLI ≤ 1

n2

4M

β(1 − 2β)

1

βnM
=

1

n3

4

β2(1 − 2β)
, (15)

which lead to the following conjecture:

Conjecture 4.2 For every subset-sum problem with n input numbers uniformly distributed
over [1..M], and a bound B = βnM with a fixed β, 0 < β < 1

2 , the expected relative error of a
solution found by the algorithm RGLI(1) is proportional to 1

n3 .

A comparison of this conjecture with Conjecture 4.1 suggests, that on the average the second
phase of RGLI reduces the relative error by a factor of 1/n. As shown in Section 5.1 experimental
tests seem to confirm this observation.

In the view of this significant error reduction after the local improvement phase one might
ask, whether it is possible to reduce the relative error even further by running the local im-
provement phase multiple times. As shown in the lemma below, the solution found after a
single run of the local improvement phase is a local maximum, so unfortunately running the
local improvement phase more than once wouldn’t reduce the error anymore.

Lemma 4.3 The solution found after one run of the local improvement phase is a local maxi-
mum.

Proof. Assume that on the contrary, after the first run there exists an improving replacement
aj for some ai < aj . Let ti denote the time at which ai ended up in the solution during the
first run of local improvement.

Clearly, aj was not available (i.e. it was in the local solution) at ti — otherwise it would
have been chosen instead of ai. Hence aj was replaced after ti by some ak > aj . Analogously,
ak was not available at ti, and hence it was replaced after ti by some al > ak, and so on.

11

We get an infinite sequence of elements aj < ak < al < . . . , but there is only a finite number
of elements, hence contradiction. 2

Finally, we can use the estimation (15) to derive a condition under which RGLI finds an
exact solution with high probability. This yields the following conjecture, which is also strongly
confirmed by the experiments (cf. Section 5.1.2).

Conjecture 4.3 For every subset-sum problem with n input numbers uniformly distributed
over [1..M], and a bound B = βnM with a fixed β, 0 < β < 1

2 , if M ≤ 1
4n2β(1 − 2β) then the

algorithm RGLI(1) finds an optimal solution with high probability.

5 Experimental Results

Although theoretical bounds for the performance of algorithms provide often a good measure
for comparisons of algorithms, they are sometimes too pessimistic or too weak to help one in
choosing the “best” algorithm in practice, especially when several algorithms provide similar
theoretical bounds (see also (Soma et al. 1995), (Martello & Toth 1985)). Besides, as follows
from the attempts of the previous section, it is sometimes hard to derive any theoretical bounds
at all. Therefore it is often reasonable to compare the performance of algorithms experimentally
with some randomly-generated or especially-constructed instances of problems.

0 20 40 60 80 100 120 140
10

−9

10
−8

10
−7

10
−6

Average relative error (100 numbers)

magnitude [bits]

re
la

tiv
e

er
ro

r

MT(3)
PS(3, 1)
PS(3, 2)

0 20 40 60 80 100 120 140
10

0

10
1

10
2

10
3

10
4

10
5

Average running time (100 numbers)

magnitude [bits]

tim
e

[m
s]

MT(3)
PS(3, 1)
PS(3, 2)

Figure 2: MT(3) vs. PS(3, 1) and PS(3, 2).3

This section presents results of various computational tests. The main goal was to inves-
tigate the performance of the algorithm RGLI in practice. The test programs were written
in Java and run on Silicon Graphics’ Indy computer with a Java Virtual Machine from SGI,
version “3.0.1 (Sun 1.1.3)”, and on a PC with Red Hat Linux 6.0 and Java Virtual Machine
version “1.2.2”.

Figure 2 shows a comparison of performance of the algorithms MT(s) and PS(s, v), where
the corresponding tests were performed in the same way as for RGLI and other algorithms, as
described below. The error bars show the 10th and 90th percentile marks for each point. As

3To avoid overlapping of error bars, the plotted points are slightly shifted horizontally from the original test
positions. This modification doesn’t influence the significant values communicated by the graphs.

12

mentioned in Section 2.2 and as it is apparent from the Figure 2, the algorithms MT(s) and
PS(s, v) have in practice roughly the same running time and provide on average similar relative
errors. Furthermore, for s=2 both algorithms are by definition the same. Therefore in the tests
comparing RGLI with other methods the algorithm PS(s, v) was omitted – it is represented by
MT(s).

All tests were performed on randomly generated examples of the SSP. For a specified number
n and a magnitude m, the numbers a1, . . . , an were chosen uniformly at random from the range
[1, 2m], and the bound B was set to the sum of n

2 randomly selected ai’s (the tests of Section 5.2
are an exception from this rule). This implies that the magnitude of B is roughly n

2 · 2m

2 and
assures that the optimal solution has an error equal to zero. Then every tested algorithm
was run on the generated problem. Since each considered algorithm, except RG, requires that
the numbers ai are in a monotone order, the numbers were sorted directly after generating.
Therefore the presented running times do not include the time needed for sorting, which, using
the Quick-Sort algorithm, is about 1-2ms for 100 numbers and 21-29ms for 1000 numbers (exact
values depend on the length of numbers).

0 20 40 60 80 100 120 140
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

Average relative error (100 numbers)

magnitude [bits]

re
la

tiv
e

er
ro

r

MT(2)
MT(3)
G
RG(40)
RGLI(10)
RGLI(40)

0 20 40 60 80 100 120 140
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

Average relative error (1000 numbers)

magnitude [bits]

re
la

tiv
e

er
ro

r

MT(2)
G
RG(40)
RGLI(10)
RGLI(40)

0 20 40 60 80 100 120 140

10
0

10
1

10
2

10
3

10
4

Average running time (100 numbers)

magnitude [bits]

tim
e

[m
s]

MT(2)
MT(3)
G
RG(40)
RGLI(10)
RGLI(40)

0 20 40 60 80 100 120 140

10
0

10
1

10
2

10
3

10
4

Average running time (1000 numbers)

magnitude [bits]

tim
e

[m
s]

MT(2)
G
RG(40)
RGLI(10)
RGLI(40)

Figure 3: RGLI vs. other algorithms: approximative solving of sparse problems.4

4As in Figure 2, the plotted points are slightly shifted horizontally from the original test positions.

13

5.1 Comparison of RGLI(t) with Other Algorithms

The performance of approximation algorithms for SSP depends significantly on the density of
the specified problems. For random low-density subset-sum problems usually there exist few,
if any, exact solutions, i.e. solutions whose error is equal to zero. However, if there are plenty
of numbers of relatively small magnitude, i.e. if the density of the numbers ai is high, then
usually there exist many exact solutions. In such a case it is often possible for an approximation
algorithm to find one of those exact solutions. Hence the two cases were tested separately.

The performance of the algorithm RGLI(t) was compared with other methods referred to in
Section 2: G, RG(t), MT(2) (i.e. QG) and MT(3). The maximal number of trials t was set to 40
for the RG algorithm, and for RGLI two variants were tested: t=10 and t=40 (cf. Section 5.3 for
more about choosing the value of t).

5.1.1 Approximative Solving of Low-Density Problems

For every chosen pair (n, m), where n denotes of number of numbers and m their magnitude,
100 random problems were generated and solved with each5 tested algorithm.

10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50
Optimal solutions (100 numbers)

magnitude [bits]

op
tim

al
 s

ol
ut

io
ns

G

MT(2)

MT(3)

RGLI(40)

10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

35

40

45

50
Optimal solutions (1000 numbers)

magnitude [bits]

op
tim

al
 s

ol
ut

io
ns

G
MT(2)
RGLI(40)

10 15 20 25 30 35 40
10

0

10
1

10
2

10
3

10
4

10
5

Average running time per optimal solution (100 numbers)

magnitude [bits]

tim
e

[m
s]

G

MT(2)

MT(3)

RGLI(40)

10 15 20 25 30 35 40 45 50 55
10

1

10
2

10
3

10
4

Average running time per optimal solution (1000 numbers)

magnitude [bits]

tim
e

[m
s]

G
MT(2)
RGLI(40)

Figure 4: RGLI vs. other algorithms: exact solving of dense problems

5The algorithm MT(3) was excluded from the tests for n=1000 due to its immense running time.

14

The graphs in Figure 3 show the averaged results of the tests. The plotted error bars
show the 10th and 90th percentile marks for each point. Experiments indicate that for all the
algorithms the relative error values are distributed in agreement with the Gamma distribution,
and the running times in agreement with the normal distribution.

Note that with at most 10 trials the algorithm RGLI gives much smaller errors than MT(2)
and the errors of RGLI(40) are comparable even with those returned by MT(3). Note also that
the gap in the relative error between RG(40) and RGLI(40) is roughly proportional to 1/n,
which is in agreement with Conjectures 4.1 and 4.2 (assuming that the reduction of the errors
due to multiple trials is similar for both algorithms).

5.1.2 Exact Solving of High-Density Problems

In the tests investigating the behavior of the algorithms on high-density problems the algorithm
RGLI(t) was tested only for t=40. Additionally, the actual number of trials till the exact
solution, if found, was recorded. For each selected pair (n, m) 50 problems were generated and
solved with each6 considered algorithm.

Figure 4 shows the comparison of the algorithms’ performance. Note that RGLI(40) is much
better than G or MT(2), both in percentage of optimally solved problems and in running time.
MT(3) finds the optimal solution slightly more often than RGLI(40), but RGLI(40) is much more
efficient.

Figure 5 presents the actual number of trials used by the RGLI(40) to find the optimal
solutions, and the table below shows the upper bounds for M derived from the Conjecture 4.3
for some values of n. Note that the conjectured values agree pretty well with the results from
the Figure 5.

n max. M for optimal solution

102 1
4 · 1

4 · 1
2 · 104 ≈ 28

103 1
4 · 1

4 · 1
2 · 106 ≈ 215

104 1
4 · 1

4 · 1
2 · 108 ≈ 221

105 1
4 · 1

4 · 1
2 · 1010 ≈ 228

5.2 Magnitude of B

In the test of this section the numbers ai were generated in a usual, random way, but the bound
B was always set exactly to a βnM for some values β, 1

16 ≤ β ≤ 1
2 . In this case the sum of

the optimal solution might be smaller than B. Since it is difficult to find the optimal solution
of a random problem P, the relative errors in this section were computed by using B instead
of V∗(P), which gives values slightly greater than the actual relative errors. The goal of these
tests was to check two following hypotheses (under an assumption of uniform distribution of
numbers ai):

1. the relative error of RGLI does not depend on the existence of an exact solution

2. the relative error of RGLI is roughly the same for all “usual” values of β, i.e. 0.1 ≤ β ≤ 0.4

6Also here the algorithm MT(3) was excluded from the tests for n=1000.

15

10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50
100 numbers

magnitude [bits]

op
tim

al
 s

ol
ut

io
ns

1 trial
2 trials
3−10 trials
11−20 trials
21−40 trials
not found

10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

35

40

45

50
1000 numbers

magnitude [bits]

op
tim

al
 s

ol
ut

io
ns

1 trial
2 trials
3−10 trials
11−20 trials
21−40 trials
not found

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50
10000 numbers

magnitude [bits]

op
tim

al
 s

ol
ut

io
ns

1 trial
2 trials
3−10 trials
11−20 trials
21−40 trials
not found

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50
100000 numbers

magnitude [bits]

op
tim

al
 s

ol
ut

io
ns

1 trial
2 trials
3−10 trials
11−20 trials
21−40 trials
not found

Figure 5: RGLI(40): the actual number of trials till optimal solution

For each triple (n, m β) 20 random sets of ai’s were generated and solved with RGLI(40).
Figure 6 shows the averaged results which apparently agree with above hypotheses. Worse
performance in degenerated cases, i.e. β ≈ 0 or β ≈ 1

2 , can be explained by the fact, that in
such cases there exist usually less “good” solutions, if any at all.

The graphs of Figure 6 present also expected errors of RGLI(1) as estimated in Section 4.2
by the formula (14). The similarity of the behavior of the estimated and measured errors is
quite remarkable. The evident shift between the expected and the actual errors can be easily
explained by the fact that the tested algorithm was not RGLI(1) but RGLI(40). Indeed, this
argument is strongly supported by the tests presented in the next section.

5.3 Determining the Sufficient Number of Trials

The difference of the relative errors of RGLI(10) and RGLI(40) suggests that by increasing
the maximal number of trials one could achieve smaller and smaller errors. Although this is
definitely a correct conclusion, experimental results presented in the Figure 7 indicate that it is
worthwhile to allow at most about 40 to 80 trials — larger numbers of trials yield only a slight
improvement of the solution while increasing the running time significantly (linearly in t).

16

0 0.1 0.2 0.3 0.4 0.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

beta

re
la

tiv
e

er
ro

r
100 numbers

expected (1 trial)
32 bits
64 bits
128 bits
512 bits

0 0.1 0.2 0.3 0.4 0.5
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

1000 numbers

beta

re
la

tiv
e

er
ro

r

expected (1 trial)
32 bits
64 bits
128 bits
512 bits

0 0.1 0.2 0.3 0.4 0.5
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10000 numbers

beta

re
la

tiv
e

er
ro

r

expected (1 trial)
32 bits
64 bits
128 bits
512 bits

0 0.1 0.2 0.3 0.4 0.5
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

100000 numbers

beta

re
la

tiv
e

er
ro

r
expected (1 trial)
32 bits
64 bits
128 bits
512 bits

Figure 6: RGLI(40): relative error as a function of B’s magnitude

Note that the graphs of Figure 7 cover a wide range of both magnitude and number of
numbers, and that the dependence of the relative errors on the number of trials is similar in all
cases. Indeed, in all cases the suggested 40 to 80 trials yield a reduction of the relative errors
by two a factor of about 100.

This indicates that the upper limit on the number of trials apparently does not depend
on the number of numbers n or on their magnitude, i.e. t can be considered as a constant in
the algorithm RGLI. Therefore the time complexity of RGLI can be bounded by O(n log n), as
mentioned in Section 4.1.

6 Summary

We have presented a new randomized approximation algorithm for the subset-sum problem with
time complexity O(n log n) and space complexity O(n). Experiments with random uniformly-
distributed examples of SSP show that our algorithm outperforms, both in running time and
average error, Martello and Toth’s quadratic greedy search, whose time complexity is O(n2).

We have proposed also some conjectures on the expected error of our algorithm for uniformly

17

0 20 40 60 80 100 120 140
10

−8

10
−7

10
−6

10
−5

10
−4

100 numbers

number of trials

re
la

tiv
e

er
ro

r

32 bits
64 bits
128 bits
512 bits

0 20 40 60 80 100 120 140
10

−11

10
−10

10
−9

10
−8

10
−7

1000 numbers

number of trials

re
la

tiv
e

er
ro

r

32 bits
64 bits
128 bits
512 bits

0 20 40 60 80 100 120 140
10

−14

10
−13

10
−12

10
−11

10
−10

10000 numbers

number of trials

re
la

tiv
e

er
ro

r

32 bits
64 bits
128 bits
512 bits

0 20 40 60 80 100 120 140
10

−17

10
−16

10
−15

10
−14

10
−13

100000 numbers

number of trials

re
la

tiv
e

er
ro

r

32 bits
64 bits
128 bits
512 bits

Note: for 100000 numbers and t ≥ 9 all 32-bit-problems were solved exactly,
which is in agreement with Conjecture 4.3

Figure 7: Average relative error of RGLI as a function of number of trials

distributed examples of SSP and provided some analytical and experimental arguments justi-
fying those conjectures. It would be interesting to investigate the algorithm’s performance also
for non-uniformly distributed or some deterministic (not randomly generated) SSP-instances.

7 Acknowledgements

I am very grateful to Emo Welzl for giving me the opportunity of working under his supervision,
for the encouragement and for the invaluable hints and comments. I would like to thank
also Nicola Galli, Gyula Karolyi and Nei Yoshihiro Soma for their interest, discussions and
suggestions. Finally, I’d like to thank an anonymous referee for numerous comments and
suggestions, which greatly improved the presentation.

18

References

Balas, E. & Zemel, E. (1980). An algorithm for large zero-one knapsack problems, Operations
Research 25: 1130–1154.

Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables, Journal
of the American Statistical Association 58: 13–30.

Ibarra, O. H. & Kim, C. E. (1975). Fast approximation algorithms for the knapsack and sum
of subset problems, Journal of the ACM 22: 463–468.

Kellerer, H., Mansini, R. & Speranza, M. G. (1998). Two linear approximation algorithms for
the subset-sum problem. to appear in EJOR.

Martello, S. & Toth, P. (1984). Worst case analysis of greedy algorithms for the subset-sum
problem, Mathematical Programming 28: 198–205.

Martello, S. & Toth, P. (1985). Approximation schemes for the subset-sum problem: Survey
and experimental analysis, European Journal of Operational Research 22: 56–69.

Reingold, E. M., Nievergelt, J. & Deo, N. (1977). Combinatorial Algorithms. Theory and
Practice, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Soma, N. Y., Zinober, A. S. I., Yanasse, H. H. & Harley, P. J. (1995). A polynomial approxi-
mation scheme for the subset sum problem, Discrete Applied Mathematics 57: 243–253.

Tinhofer, G. & Schreck, H. (1986). The bounded subset sum problem is almost everywhere
randomly decidable in O(n), Information Processing Letters 23: 11–17.

A Details of Performance Analysis

A.1 Proof of Lemma 4.1

The formula (1) can be rewritten as

εk(B) =

1

M

B−1∑

i=1

εk−1(i) +
M − B

M
εk−1(B) 1 ≤ B ≤ M

1

M

M∑

i=1

εk−1(B − i) B > M

Subtracting εk(B − 1) from εk(B) gives

εk(B) − εk(B − 1) =

(

1 − B

M

)k

,

19

which leads directly to the (non-recursive) formula for the εk(B) (for B ≤ M):

εk(B) = εk(B) − εk(0)

=

B∑

i=1

(εk(i) − εk(i − 1))

=

B∑

i=1

(

1 − i

M

)k

=
1

Mk

B∑

i=1

(M − i)k (16)

Further we get

1

Mk

∫ B

1
(M − x)k dx ≤ εk(B) ≤ 1

Mk

∫ B−1

0
(M − x)k dx

− 1

Mk

(
(M − x)k+1

k + 1

)∣
∣
∣
∣

B

1

≤ εk(B) ≤ − 1

Mk

(
(M − x)k+1

k + 1

)∣
∣
∣
∣

B−1

0
(

M − 1

M

)k M − 1

k + 1
− (M − B)k+1

Mk(k + 1)
≤ εk(B) ≤ M

k + 1
− (M + 1 − B)k+1

Mk(k + 1)
(17)

For B = M we obtain

(
M − 1

M

)k M − 1

k + 1
≤ εk(M) ≤ M

k + 1
,

which can be simplified further by using the following fact

0 ≤ M

k + 1
−
(

M − 1

M

)k M − 1

k + 1
≤ 1 . (18)

The left inequality of (18) is obvious and the right can be proved as shown below.

M

k + 1
−
(

M − 1

M

)k M − 1

k + 1
≤ 1 ⇔ M −

(
M − 1

M

)k

(M − 1) ≤ k + 1

⇔ 1 −
(

M − 1

M

)k+1

≤ k + 1

M

⇔ 1 − k + 1

M
≤
(

1 − 1

M

)k+1

⇔ 1 − κx ≤ (1 − x)κ, (x =
1

M
, κ = k + 1),

where the last inequality is comes directly from the Taylor series of (1 − x)κ.

20

It follows that (18) is indeed satisfied and we obtain

εk(M) =
M

k + 1
+ O(1) . (19)

Note that for B “close to” M , i.e. when M − B = O(M), the terms subtracted on both sides
of (17) are negligible7, therefore we get

εk(B) = εk(M) + O(1) =
M

k + 1
+ O(1) for B ≤ M, M − B = O(M) . (20)

The estimation of ηk(B) proceeds similarly to εk(B). Formula (2) can be equivalently
written as

ηk(B) =

B

M
+

1

M

B−1∑

i=1

ηk−1(i) +
M − B

M
ηk−1(B) 1 ≤ B ≤ M

1 +
1

M

M∑

i=1

ηk−1(B − i) B > M

which for B ≤ M yields

ηk(B) = HB −
B∑

i=1

(1 − i
M

)k

i
, (21)

where HB is the B-th harmonic number. Equation (21) can be transformed further as follows:

ηk(B) = HB −
B∑

i=1

(1 − i
M

)k

i

= HB −
B∑

i=1

(1 − i
M

)k−1(1 − i
M

)

i

= HB −
B∑

i=1

(1 − i
M

)k−1

i
︸ ︷︷ ︸

ηk−1(B)

+
1

M

B∑

i=1

(1 − i

M
)k−1

︸ ︷︷ ︸

εk−1(B)

= ηk−1(B) +
1

M
εk−1(B)

=
1

M

k−1∑

j=0

εj(B) .

Using (20) in the above formula we get

ηk(B) = Hk + O(1) = ln k + O(1) for B ≤ M, M − B = O(M) , (22)

which completes the proof of Lemma 4.1.
7i.e. they can be bounded by O(1)

21

A.2 Proof of Lemma 4.2

For i = 1, . . . , 8 we obtain

E [bi] ≤ b1 ≤ M

l
≤ 2

i

4M

l
=

2

iγ
.

Let f(x) = x − x2γ. For i ≥ 8 we have

E [bi+1] ≤ f (E [bi])

≤ f

(
2

iγ

)

,

since for x < 1
2γ

the function f is monotonic and increasing. Therefore we get

E [bi+1] ≤ 2

iγ
− 4

i2γ

=
2

(i + 1)γ

(
i + 1

i
− 2(i + 1)

i2

)

=
2

(i + 1)γ

(
i2 − i + 2

i2

)

︸ ︷︷ ︸

≤ 1, for
i ≥ 2

≤ 2

(i + 1)γ
.

This completes the the proof of Lemma 4.2.

22

