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Abstract. A prerequisite for processing privacy-sensitive data with automatic
tools is a fine-grained formalization of privacy policies along with appropriate
operators to manipulate such policies. The most promising results for the formal-
ization of privacy policies so far have been achieved with the language EPAL
resp. its academic counterpart E-P3P.
As shown at ESORICS 2004, in the existing form E-P3P has fundamental limi-
tations in the expressability of composed policies as desired in projects involving
multiple departments or enterprises. We describe a Novel Algebraic Privacy Spec-
ification (NAPS) which addresses these problems by offering conjunction, com-
position and scoping operators, which are defined analogously to those known
from E-P3P, but exhibit desirable algebraic properties. Most notably NAPS is, in
contrast to E-P3P, closed under all of these operators. Also, we show how existing
E-P3P policies fit into the NAPS framework.

1 Introduction

The processing of privacy-sensitive data is accompanied by increasingly complex regu-
lations that have to be taken into account. Hence research on formal models for privacy
policies and (semi-)automatic tools for processing these policies is gaining attention
in academic and industrial research. Compared to access control, the available tools
for managing privacy policies are far from being satisfactory, and even the formaliza-
tion of privacy policies is not solved in a satisfactory manner yet. The association of
purposes and obligations with data access, as needed for privacy policies, complicates
the application of access control tools significantly and motivates the development of
specific tools for expressing and processing privacy policies. Here it is useful to differ-
entiate between i) the “simple” requirements needed to deal with privacy issues relating
enterprise and private users and ii) the fine-grained tools needed for handling privacy-
sensitive data in enterprise-to-enterprise relations. For handling privacy policies in the
latter context, the currently most promising approach is the Enterprise Privacy Autho-
rization Language (EPAL) resp. its academic abstraction E-P3P (see [1, 17, 5, 4]).

Having in mind large projects, possibly involving several enterprises, the question
for a modular construction of privacy policies naturally arises. Based on EPAL resp.
E-P3P an interesting first step in this direction has been presented by Backes et al. at
ESORICS 2003 [5]. Albeit being of great value, the operator for ordered composition
discussed therein does not offer the desired flexibility for composing privacy policies



yet. Thus, motivated by well-known algebraic tools from access control [9, 24, 10, 25],
at ESORICS 2004 Backes et al. put forward an algebra for composing enterprise pri-
vacy policies [4]. Next to the ordered composition of privacy policies formulated in
E-P3P, here also conjunction and disjunction operators are introduced, thereby allow-
ing for more flexibility in deriving new privacy policies from existing ones in a mod-
ular way. Unfortunately, the algebra in [4] suffers from fundamental limitations in the
expressiveness of EPAL resp. E-P3P, which prohibit an intuitive definition of policy
conjunction and disjunction as would be desirable. To cope with this problem, [4] in-
troduces a class of well-founded privacy policies, for which a comparatively convenient
algebraic treatment is possible. However, this policy class is not closed under ordered
composition, which makes the combination of different policy operators quite inconve-
nient. Also, with regard to the operator semantics some aspects are not fully satisfactory
at the moment. E. g., i) incorporation of the default ruling into the policy, as proposed
before the definition of ordered composition in [4], makes ordered composition triv-
ial for any but a “don’t care” default ruling. The default ruling of the first—higher
priority—policy, now incorporated in the ruleset, will treat all queries, and leave none
to be treated by the second—lower priority—policy; ii) the fact that in E-P3P obli-
gations on, say, a department are always at least as strict as obligations imposed on
members of the department makes the definition of minimum requirements on a de-
partment somewhat cumbersome; iii) restricting rulings to “allow”, “deny” and “don’t
care” (plus obligations) as in E-P3P is not really suited to differentiate between “access
can be allowed” and “access must not be denied”. When dealing with privacy-sensitive
data, a convenient way to express these different types of “allow” is desirable: While
accessing a data item for marketing purposes may be acceptable, legal regulations may
impose that a client may never be denied access to her personal data.

The Novel Algebraic Pricavy Specification (NAPS) framework described below ad-
dresses these issues, thereby overcoming some limitations of E-P3P. The semantics of
NAPS is more or less straightforward, defined by simply evaluating rules by descending
priority. Definition of minimal requirements, say in the privacy policy of a company,
is well supported by NAPS and the refinement of these to department or workgroup
policies can be achieved through ordered composition. NAPS allows the separate spec-
ification of obligations both for the case when access to a data item is denied or granted.
Furthermore NAPS is closed under its operators, including conjunction, ordered com-
position, and scoping. Also the handling of partial or missing information about privacy
relevant data (such as age of a customer) is taken into account.

Despite these attractive features it would certainly not be justified to claim NAPS to
be a totally superior substitute for E-P3P. E. g., so far no automatic tools for processing
NAPS policies exist, while for E-P3P resp. EPAL progress in the development of such
tools has been made already (cf. [3, 2]). Thus, much work remains to be done to explore
the practical value of NAPS, but we think the results achieved so far certainly justify
further research in this direction.

Further related work The starting point to develop NAPS was the E-P3P based algebra
to compose enterprise privacy policies presented in [4] and building on [5]. In par-
ticular, NAPS keeps the established approaches to formulate purpose-specific requests
and obligations associated with data accesses. Individual privacy-specific aspects of
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data processing have been discussed already in [15, 6, 8, 21], for instance. E-P3P resp.
EPAL offers one of the most elaborated frameworks in this context and getting rid of
limitations in policy composition of these frameworks without giving up E-P3P’s resp.
EPAL’s merits is indeed desirable.

Policy composition has been explored in various contexts already (cf., e. g., [19, 23,
14, 12]), particularly in access control [11, 16, 9, 27, 10], and—as already mentioned in
[4]—existing algebraic tools for access control [9, 10, 24, 25] are a key motivation to
establish algebraic tools for the treatment of privacy policies.

2 Basic Definitions

Statements to be captured by privacy policies typically have a form like “John Doe from
sales may read customer data for marketing purposes, if the customer has consented,
with the obligation to notify the customer.” To formalize such statements we follow the
established approach of using hierarchies to represent users, data, actions, and purposes
(cf. [5, 4]). Also for expressing obligations, we mainly adopt the modelling from [4].
For expressing conditions and rulings of policies, our approach deviates from E-P3P
and we refer to Section 2.4 for a discussion of how to embed E-P3P policies into the
NAPS framework.

2.1 Hierarchies, Obligations, and Conditions

As in E-P3P we use hierarchies to model users, data, purposes and actions. This in
particular enables the specification of policies applying to entire subhierarchies, e. g. all
users within (“≤”) the sales department. Unlike [5, 4] we do not require hierarchies to
have unique predecessors:

Definition 1 (Hierarchy). A hierarchy (H,≤H) is an ordered3, finite set. A hierarchy
(H,≤H) is a subhierarchy of a hierarchy (G,≤G), written (H,≤H) ⊆ (G,≤G), iff
(H ⊆ G) and (≤H⊆≤G). We set (H,≤H)∪ (G,≤G) := (H ∪G, (≤H ∪ ≤G)∗) with
∗ denoting reflexive, transitive closure. Note that (H,≤H)∪ (G,≤G) is only a hierachy
if (≤H ∪ ≤G)∗ is an order, in which case we call H and G compatible.

A privacy policy not only regulates access to data, but can impose obligations like
“delete this data set within two weeks” or “notify the customer”. Analogously as in [4],
it is convenient to impose some algebraic structure on the set of obligations:

Definition 2 (Obligation Model). An obligation model (O,≤,∧,>,⊥) is a meet-semi-
lattice (a commutative, idempotent monoid) [7, 26] with maximal element >, the empty
obligation or no obligation, and minimal element ⊥, the unfulfillable obligation. In
keeping with the definition of a semilattice we have ∀o, p ∈ O : o ≤ p : ⇐⇒ o∧p = o.

We assume that all occurring obligation models (O,≤) are subsets of a fixed (super)
obligation model (O,≤O) such that ≤ is the restriction of ≤O to O ×O.

3 We use order and partial order synonymously. Total orders are explicitely called so.
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Imposing the obligation⊥ indicates, that an action must not be performed. Imposing
> signifies, that an action may be performed without restriction.

Remark 1 (Standard Obligation Model). For most purposes it will suffice to imagine a
powerset lattice (P(Õ),⊇) over a set of elementary obligations Õ (like the ones stated
above) with the set union ∪ as conjunction ∧, > := ∅, ⊥ := Õ and for A,B ∈ P(Õ) :
A ≤ B ⇐⇒ A ⊇ B.

We want to enable policy specifications, making no final decision upon granting
access or not, but still providing an obligation for either case. This allows to defer the
final decision of granting or denying access to another policy or to an access control
system (in the simplest case just granting (or denying) access by default). Therefore,
we design NAPS rules to yield a pair of obligations r = (o+, o−) as ruling, where o+

is the obligation to be imposed if access to the data is later granted whereas o− is the
obligation to be imposed if access to the data is later denied. A rule may impose the
obligation o+ = ⊥, meaning access must not be granted, or it may impose o− = ⊥,
meaning access must not be denied. The ruling o+ = ⊥, o− = ⊥ is contradictory and
used as an error state.

Definition 3 (Ruling). Let O be an obligation model. A ruling r is a pair of obligations
r = (o+, o−) ∈ O × O where o+ is the obligation imposed on granting access to a
data element and o− is the obligation imposed on denying access to a data element.
Defining the operation ∧ elementwise on the pairs (o+, o−), we obtain a semilattice
of rulings (O × O,≤,∧, (>,>), (⊥,⊥)) with minimal element (⊥,⊥) and maximal
element (>,>). Keeping with the definition of a semilattice, for all r1 = (o+

1 , o−1 ), r2 =
(o+

2 , o−2 ) ∈ O×O we have r1 ≤ r2 : ⇐⇒ r1 ∧ r2 = r1 ⇐⇒ (o+
1 ∧ o+

2 , o−1 ∧ o−2 ) =
(o+

1 , o−1 ) ⇐⇒ o+
1 ≤ o+

2 and o−1 ≤ o−2 .

Privacy related regulations often depend on context information; e. g., accessing the
data of under age customers for marketing purposes may require the consent of a legal
guardian. Hence “age of customer” and “consent of legal guardian” are variables that
have to be considered in the evaluation of privacy policies. Restrictions of the type in
this example are captured by a 3-valued, many sorted condition logic, which is defined
over the following condition vocabulary.

Definition 4 (Condition Vocabulary). A condition vocabulary (S, X, Σ, ρ) consists of
(adapted from [13, Chapter 10]) i) a finite set S∪̇{l3} of sorts (or types) such that S is
nonempty; ii) logical connectives ∧, ∨ of rank (l3, l3; l3), ¬, ∼ of rank (l3; l3), 0, u, 1
of rank (ε; l3); iii) for every sort s ∈ S the equality symbol .=s of rank (s, s; l3); iv) for
every sort s ∈ S a finite set Xs = {xs0, xs1, xs2, . . .} of variables, each variable xsi

being of rank (ε; s); we define the family of sets X := {Xs | s ∈ S} and X :=
⋃̇

s∈SXs

the set of all variables; v) auxiliary symbols “(” and “)”; vi) a finite (S∪̇{l3})-ranked
alphabet (Σ, ρ) with rank function ρ : Σ → S∗ × (S∪̇{l3}) of nonlogical symbols
consisting of:

– A finite set ΣF := {f ∈ Σ | (t; s) := ρ(f) ∈ S+ × S} of function symbols. The
string t is called arity of f and the symbol s sort (or type) of f .
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– For each sort s ∈ S a finite set Σs
C := {c ∈ Σ | ρ(f) = (ε; s)} of constants. The

family of sets Σs
C is denoted by ΣC .

– A finite set ΣP := {P ∈ Σ | (t; l3) := ρ(P ) ∈ S∗ × {l3}} of predicate symbols.
The string t is the arity of P , if t = ε, P is a propositional letter.

We call a condition vocabulary with set of nonlogical symbols Σ a vocabulary Σ.

Having defined a vocabulary for a condition logic, we next define models, the many-
sorted algebras, for this logic.

Definition 5 (Many-sorted Algebra). Given an S-ranked alphabet Σ, a many-sorted
Σ-algebra M is a pair (M, I) with M = (Ms)s∈S an S-indexed finite family of fi-
nite sets Ms 6= ∅, the carriers of sort s, and I an interpretation function I : Σ →⋃

n∈N
⋃

s,s1...sn∈S M
Ms1×...×Msn
s s. t.: ∀f ∈ Σ : ρ(f) = (s1 . . . sn, s) =⇒ I(f) ∈

M
Ms1×...×Msn
s and ∀c ∈ Σ : ρ(c) = (ε, s) =⇒ I(c) ∈ Ms.

Now we can define terms, formulas, models and semantic for our condition logic.

Definition 6 (Condition Language). Let (S, X, Σ, ρ) be a condition vocabulary. The
condition language C(S,X,Σ, ρ) is the set of correctly typed formulas over (S,X,Σ, ρ).
Formulas are defined recursively as usual for predicate logic (see [13, Ch. 10]). The
free variables of a formula c ∈ C are denoted by free(c). As the condition logic has no
quantifiers, these are all variables of c. The semantics of C formulas is defined as usual
for the 3-valued Lukasiewicz logic L3 (cf., e. g., [18, 13, 22]), using the following two
definitions.

Definition 7 (Admissible Model). A many-sorted Σ-structure (M, I) is a many-sorted
Σ-algebra, where for all s ∈ S the symbol for “unknown” � ∈ Ms and Ml3 =
{0, u, 1}. A structure (M, I) is called admissible or admissible model for a condition
language C, provided that I|ΣC

: ΣC →
⋃

s∈S Ms is a surjective map, i. e. there is a
constant for every possible data item in the structure M . If a fixed admissible structure
is given, we will usually choose one of these constants and use it and the data item
interchangibly.

Definition 8 (Variable Assignment). An assignment of sort s of the variables is a
function αs ∈ MVs

s . An assignment α = (αs)s∈S is an S-indexed family of assignments
of sort s. The set of all assignments for a set of variables X and a structure M is written
Ass(X, M). An assignment α is partial if α(x) = � for some x ∈ X and complete if
this is not the case. For the set of complete assignments we write Ass∗(X, M). To allow
a uniform treatment of policies defined over different vocabularies, we assume a set X
all variables and a set M all values are taken from. Typically these are sets of strings
over a given alphabet, e. g. valid XML expressions; we define the set of assignments
Ass := MX .

2.2 Syntax of NAPS Policies

Having described the basic components of NAPS policies, we now collect them into a
vocabulary.
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Definition 9 (NAPS Vocabulary). A (NAPS) vocabulary V consists of hierarchies (or-
dered sets) U , D, P , and A, called user, data, purpose, and action hierarchy, respec-
tively; a condition language C, an admissible structure (M, I) for C and an obligation
model O: V = (U,D,P, A,C(S, X, Σ, ρ), (M, I), O)

Given two vocabularies V and V ′ we write V ⊆ V ′ iff U ⊆ U ′, D ⊆ D′, P ⊆ P ′,
A ⊆ A′, S ⊆ S′, Σ ⊆ Σ′, O ⊆ O′, ∀s ∈ S : Xs ⊆ X ′

s, ∀s ∈ S : Ms ⊆ M ′
s, ρ = ρ′|Σ ,

I = I ′|Σ,M , where ∀f ∈ Σ : I ′|Σ,M (f) := I ′(f)|M .

As a naming convention, we assume that the components of a vocabulary V are
always called as in Definition 9 except if explicitly stated otherwise. In a vocabulary Vi

all components also get a subscript i, and similarly for superscripts.
As indicated before, privacy policies make statements about users performing an ac-

tion on data with a specific purpose. Accordingly, a NAPS query is a tuple (u, d, p, a)
in the query set Q(V ) := U ×D × P × A for the given vocabulary V . NAPS queries
are not restricted to minimal elements in the hierarchies. This facilitates the handling
of policies in scenarios, where a coarse policy, say a company policy referring only
to departments, is refined, say to a department policy making statements about work-
groups or individuals. In such a scenario elements that are initially minimal may later
get children: User John Doe my not be mentioned in the company policy, but may very
well appear in a department policy. Also, it may still be of interest to query the com-
pany policy with a department, to find out about the (minimum) restrictions for that
department.

To be able to treat policies defined on different vocabularies in a uniform manner,
we define the semantics for queries outside the given vocabulary. We assume a superset
H, in which all hierarchy sets are embedded; in practice it is typically a set of strings or
valid XML expressions.

Definition 10 (Query). For a vocubulary V , we call Q(V ) = U × D × P × A the
query vocabulary associated with V and define an order ≤ on Q(V ) as follows. For
queries (u, d, p, a), (u′, d′, p′, a′) ∈ Q(V ) we set (u, d, p, a) ≤ (u′, d′, p′, a′) : ⇐⇒
(u≤Uu′) ∧ (d≤Dd′) ∧ (p≤P p′) ∧ (a≤Aa′). Given a superset H of the sets U,D,P, A
of all considered vocabularies, the set of all queries is Q := H4.

Whether a rule in a privacy policy applies to a query q ∈ Q(V ) is determined by
evaluating a logical expression or guard over the predicate≤. These logical expressions
are taken from the query or guard logic.

Definition 11 (Query or Guard Logic). The query or guard logic G for a vocabulary
V is a boolean predicate logic without quantifiers over i) the vocabulary consisting of
the binary predicate “≤” and constants CG := Q(V ); ii) the set of variables {p};
iii) operators ∧, ∨, ¬, 1, 0; iv) auxiliary symbols “(”, “)”.

We fix a model MG := Q(V ) for G with the interpretation IG(≤) :=≤ (on Q(V ))
and for q ∈ CG: IG(q) := q ∈ Q(V ). The semantics are as usual for a boolean
predicate logic and we set g(q) := evalIG,MG,αG:p7→q g.

Given the definitions above we can now define NAPS policies. Each NAPS policy
is defined over a vocabulary V and consists of a ruleset as its central component and a
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default ruling. The ruleset states how requests are to be treated, while the default ruling
provides a safe default behavior for queries that are not (yet) handled by a rule in the
ruleset.

Definition 12 (Ruleset and Privacy Policy). A ruleset R over a vocabulary V is a
subset of Z × G × C × O × O. A rule (i, g, c, r) ∈ R consists of a priority i ∈ Z, a
guard g ∈ G (the guard logic), a condition c ∈ C (the condition logic) and a ruling
r ∈ O × O. A privacy or NAPS policy P = (V,R, dr) is a triple of a vocabulary V ,
a rule-set R over V , and a default ruling dr ∈ O ×O. We call the set of these policies
NAPS and the subset for a given vocabulary NAPS(V ).

As a naming convention, we assume that the components of a privacy policy called
P are always called as in Def. 12, and if P has a sub- or superscript, then so do the
components.

2.3 Semantics of NAPS Policies

The Chief Privacy Officer (CPO) of a company should be able to define a binding set
of base regulations for the departments of a company, that can in turn be refined by
the departments. One goal of NAPS is to improve the control over the refinement of
rules versus E-P3P, and to facilitate the intuitive handling of partial knowledge, i. e.
partial variable assignments α for the condition logic C. Because of that NAPS uses
a 3-valued condition logic C. As in E-P3P a condition evaluating to “0” means that a
rule does not apply and a condition evaluating to “1” states that the rule applies and
terminates evaluation. The third logical value “u” signifies that a rule applies, but eval-
uation is to proceed. This way we can treat rules that, due to a partial assignment, might
(or might not) apply by applying their obligation conjunctively and proceeding with
evaluation, yielding a ruling that might be more restrictive than necessary, but never too
lenient. The distinction between “u” and “1” can also be used to mark certain rules as
“amendable” by lower priority rules or as “final”. Hence we speak of amendable, fi-
nal and semi-amendable rules. Amendable rules can be refined by lower priority rules,
while final rules terminate the evaluation of the policy if they apply and can thus not be
refined. Semi-amendable rules can be refined in some cases, depending on the variable
assignment α for the condition logic C.

Definition 13 (Amendable, Final, Semi-Amendable Rules). Let P = (V,R, dr) be
a policy. Then a rule (i, g, c, r) ∈ R is amendable iff ∀α ∈ Ass(X, M) : evalα(c) ∈
{0, u}. Similarly, a rule (i, g, c, r) ∈ R is final iff ∀α ∈ Ass(X, M) : evalα(c) ∈
{0, 1}. A rule that is neither amendable nor final is called semi-amendable.

A rule (i, g, c, r) ∈ R is called strongly amendable iff ∃c′ ∈ C : c = c′ ∧ u, and
a rule (i, g, c, r) ∈ R is called strongly final iff ∃c′ ∈ C : c =∼∼ c′, with = meaning
equality up to equivalence transformations of the underlying L3 logic [18, 22].

Remark 2. Clearly strongly amendable rules are amendable and strongly final rules are
final over each vocabulary, over which their symbols are defined.
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The terms above describe a rule as such, independent of a specific query q ∈ Q(V )
or assignment α ∈ Ass(X, M). Given a specific query q ∈ Q(V ) and assignment
α ∈ Ass(X, M), we may distinguish applicable, terminal and non-applicable rules
under q and α. A rule is not applicable under q and α if either the guard or the condition
evaluate to 0, if both guard and condition evaluate to 1, we call a rule terminal under q
and α, if they evaluate to 1 and u or 1 respectively, the rule is called applicable under q
and α. Therefore, while final rules are either terminal under q and α or not applicable,
amendable rules are never terminal.

Definition 14 (Applicable and Terminal Rules). Let a privacy policyP = (V,R, dr),
a query q ∈ Q(V ), and an assignment α ∈ Ass(X, M) be given.

Then a rule (i, g, c, r) ∈ R is applicable iff g(q) = 1 and evalα(c) ∈ {u, 1}; the
rule (i, g, c, r) ∈ R is terminal iff g(q) = 1 and evalα(c) = 1.

By RA(P, q, i, α) := {(i, g, c, r) ∈ R | g(q) = 1 and evalα(c) ∈ {u, 1}} we
denote the set of applicable rules for priority i. We define the set of terminal rules for
priority i as RT (P, q, i, α) := {(i, g, c, r) ∈ R | g(q) = 1 and evalα(c) = 1}.

Definition 15 (Precedence Range). For a privacy policy P = (V,R, dr) and op ∈
{max,min}, let op(P) := op(R) := op({i | ∃(i, g, c, r) ∈ R}).

The semantics of a NAPS policy, i. e. the result of a query given an assignment,
is given by Alg. 2.1. A policy is evaluated by simply collecting the obligations of all
applicable rules for the given query and assignment conjunctively, descending by pri-
ority until a terminal rule is found. Should no rule apply, the default ruling is returned,
and should query or assignment be out of vocabulary, an error is returned. In addition
to a ruling, the policy evaluation returns a tag v ∈ {f,a,d} stating how policy evalua-
tion terminated: f (final) indicates, that the evaluation terminated with a terminal rule,
a (amendable) states, that no terminal rule was found, but a rule was applicable, d in-
dicates that the default rule was applied. These evaluation tags are helpful in defining
useful notions of policy refinement, composition and conjunction, purely on the level
of evaluations without regard to the internal structure of a policy.

Definition 16 (Semantics). Let a privacy policy P = (V,R, dr), q ∈ Q, and α ∈
Ass be given. We define the set of possible evaluation results or evaluations E(V ) :=
O × O × {f,a,d} ⊆ E := O × O × {f,a,d}. The evaluation result e = (r, v) :=
evalα(P, q) ∈ E(V ) of policy P for query q and assignment α is defined by Alg. 2.1,
where “return” returns its argument and terminates the algorithm. The evaluation
tag v ∈ {f,a,d} states if the evalution was terminated by a terminal rule, found non-
terminal rules only or if the default rule was applied.

From the definition of the semantics of a NAPS policy the benefits of a 3-valued
condition logic are apparent. The purpose of the logical value u as result of a condition
c is as such twofold: i) u may indicate that due to incomplete information (a partial
variable assignment with too many�’s) one cannot determine if the rule is to be applied.
In this case the rule is applied and the obligations are imposed to guarantee correct
treatment of data, should it turn out later that the rule was to be applied. Then evaluation
proceeds to look for other rules that might also match the incomplete data; ii) u may
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Algorithm 2.1: Policy Evaluation

Input: policy P , assignment α ∈ Ass, query q ∈ Q.
Output: NAPS evaluation e ∈ E(V ).
if q 6∈ Q(V ) or α|X 6∈ Ass(X, M): return e := ((⊥,⊥), f); // invalid input
r := (>,>);
for i := max(P) downto min(P): // descend by priority i . . .

r := r ∧
V

(i,g,c,r′)∈RA(P,q,i,α) r′; // . . . picking up the rulings
if RT (P, q, i, α) 6= ∅: return e := (r, f); // . . . terminating, if needed

if ∀i ∈ Z : RA(P, q, i, α) = ∅: return e := (dr, d); // no applicable rule
return e := (r, a); // applicable rule(s) but no final rule found

indicate that a rule is amendable. An amendable rule has a condition always returning
u instead of 1, so that evaluation continues and picks up further rules concerning the
query.

A final rule is, if applicable, automatically terminal, i. e. its condition c returns 1.
In that case the evaluation stops at the priority level of the rule in question and the
obligations accumulated up to and including that level are returned.

Remark 3 (Interdependence of Query and Assignment). In general we expect the vari-
able assignment to be determined by the requested data object. Variables not being fixed
by the requested data object are, if not determined globally, set to unknown (“�”). A
variable “age of customer”, e. g., should be set to the age entry in the customer dataset.
For corporate customers “age of customer” makes no sense and is hence set to unknown
(“�”). The same is true if the age of a customer is simply unknown. As a dataset may
in principle induce an arbitrary assignment, NAPS views query and assignment as in-
dependent and does not model the connection just explained.

2.4 Embedding E-P3P Policies into the NAPS framework

A privacy policy can be regarded as description of a function mapping a query q and
an assignment α to an evaluation e. Each such function can be represented by a NAPS
policy. To prove this, an algorithm creating the policy in question can be constructed.
However, due to the page limit here we omit the proof.

Theorem 1 (Functional Completeness of NAPS). The set of NAPS policies is func-
tionally complete in the sense that, for an arbitrary but fixed dr ∈ O × O, we may
describe an arbitrary function f ∈ (O × O × {a,f} ∪ (dr, d))Q(V )×Ass(X,M) through
a NAPS policy P .

In particular, every E-P3P policy defined over an obligation model, that can be
turned into a meet-semilattice, can be transformed into an equivalent NAPS policy,
using the map (+, o+) 7→ (o+,⊥, f), (−, o−) 7→ (⊥, o−, f), ◦ 7→ (>,>, d) from E-P3P
rulings to NAPS evaluations.

2.5 Refinement and Equivalence of Privacy Policies

It is of interest to determine, if a policy is more specific or restrictive than another. De-
partment policies should be more specific or restrictive than the minimum requirements
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set in a company policy and it might be important to know if a policy is at least as
restrictive than applicable law or a treaty requirement, so that the company fulfills its
legal obligations. To be able to state what it means that a policy is more restrictive than
another, we first define in which case we consider an evaluation more restrictive or a
refinement of another.

Definition 17 (Refinement of Evaluations). Given two evaluations ei = (ri, vi) ∈
E(Vi) ⊆ E for i = 1, 2, we say that e2 functionally refines e1, written e2 � e1, iff
r2 ≤ r1. We say that e2 weakly refines e1, written e2 . e1, iff (v1 = d and v2 6=
d) or (r2 ≤ r1 and (v1 = d or v2 6= d)). Finally, defining f ≤ a ≤ d, we say that e2

refines e1,

e2 ≤ e1 : ⇐⇒ (v1 = d and v2 6= d) or (v2 ≤ v1 and r2 ≤ r1). (1)

Remark 4 (Refinement of Evaluations). The functional refinement relation � and the
weak refinement relation . on evaluations are reflexive and transitive, as ≤ is an order
on the rulings. The refinement relation ≤ is even an order on the evaluations and we
have e2 ≤ e1 =⇒ e2 . e1.

Note the special treatment of the default ruling in the definitions of weak refinement
and refinement. The default ruling is to describe some safe (possibly very restrictive)
behavior until an actual rule has been implemented (“stub behavior”). As we expect a
refinement to be more specific, refinement may replace the default ruling on some query
with a (possibly less restrictive) non-default ruling. Otherwise we demand a refinement
to be more restrictive, imposing stronger obligations or turning amendable rulings into
final ones.

From evaluations we now extend the notion of refinement to policies. As with
evaluations, functional refinement only captures the notion “more restrictive”, whereas
(weak) refinement states if a policy is more specific than another, taking into account
the special semantics of the default ruling and the vocabulary. Since policies are not
uniquely determined by their functional behavior, we collect them into equivalence
classes and distinguish i) functionally equivalent policies, that generate matching rul-
ings for each query and assignment; ii) equivalent policies, that have the same vocab-
ulary and generate matching evaluations for each query and assignment; iii) strongly
equivalent policies, that have the same vocabulary and generate matching evaluations
under each vocabulary extension (see Def. 19) for each query and assignment.

Definition 18 (Refinement and Equivalence of Policies). A policy P ′ is called func-
tional refinement of a policy P , written P ′ � P , iff ∀q ∈ Q,α ∈ Ass : evalα(P ′, q) �
evalα(P, q). A policy P ′ is called refinement of a policy P ,

P ′ ≤ P : ⇐⇒ (∀q ∈ Q(V ), α ∈ {β ∈ Ass(X ′,M ′) | β|X ∈ Ass(X, M)} : (2)
evalα(P ′, q) ≤ evalα(P, q)) and V ⊆ V ′.

Policy P ′ is a weak refinement of policy P , written P ′ . P , iff V ⊆ V ′ and ∀q ∈
Q(V ), α ∈ {β ∈ Ass(X ′,M ′) | β|X ∈ Ass(X, M)} : evalα(P ′, q) . evalα(P, q).

Finally, two policiesP andP ′ are called i) functionally equivalent, writtenP ′ ≈ P ,
iff P ′ � P and P � P ′, ii) equivalent, written P ′ ∼= P , iff P ′ ≤ P and P ≤ P ′,
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iii) strongly equivalent, written P ′ ≡ P , iff V = V ′ and ∀W ⊇ V : P ′ ↑W
∼= P ↑W

(regarding ↑ see Def. 19).

Remark 5 (Refinement and Equivalence of Policies). The refinement relations �, ., ≤
just defined are reflexive and transitive and we have P ′ ≤ P =⇒ P ′ . P . Moreover,
the relations ≈, ∼=, ≡ are equivalence relations and we have P ′ = P =⇒ P ′ ≡
P =⇒ P ′ ∼= P =⇒ P ′ ≈ P .

3 NAPS Operators

Having presented the basic definitions of the NAPS framework, we now turn to defining
operators. Since the legal requirements and the structures within a company are subject
to change we first define a vocabulary extension or up-scoping operator, that extends
the vocabulary over which a policy is defined, e. g. by adding new users, departments,
data types or variables.

Definition 19 (Vocabulary Extension, Up-Scoping). Let P = (V,R, dr) be a privacy
policy over the vocabulary V and let V ′ be a vocabulary such that V ⊆ V ′. Then
P ↑V ′ := (V ′, R, dr) is the up-scoping of P w. r. t. V ′.

In a similar fashion we can define a down-scoping operator ↓V ′ , that restricts a
policy P to a policy P ↓V ′ over a smaller vocabulary V ′ ⊆ V . The down-scoping op-
erator is useful to extract department relevant data from a company policy or to discard
entitites that are no longer of concern.

Due to space limitations we omit a precise definition of the down-scoping operator
and refer the interested reader to the full version of this paper [20]. Note however, that
down-scoping only makes sense if i) ≤H′=≤H ∩(H ′ × H ′) for H ∈ {U,D,P, A};
ii) R contains no symbol in Σ \Σ′; and iii) R and dr contain no obligation in O \ O′.
In the sequel, if we make statements about P ↓W for a vocabulary W ⊂ V , these are
to be understood to apply only for vocabularies W , that fulfill the requirements above.
In the full paper [20] we also define ruleset and policy reduction operators “reduce”,
that remove redundant terms from a ruleset, thereby possibly enlarging the number of
vocabularies suitable for down-scoping.

Often scoping leads to a refinement or at least functional refinement of a policy.
E. g., extending the vocabulary will generally lead to a refinement (the policy becomes
more comprehensive), while restricting it (such that nothing changes on the remaining
items) will lead to a functional refinement (the policy will behave the same on the
smaller vocabulary, but produce error states otherwise).

Lemma 1 (Refinement Properties of Scoping Operators). Given a privacy policy
P = (V,R, dr) and vocabularies V ′, V ′′, s. t. V ′ ⊆ V ⊆ V ′′, ≤H′=≤H ∩(H ′ ×H ′)
and ≤H=≤H′′ ∩(H ×H) for H ∈ {U,D,P, A}, we have P ↑V ′′≤ P , P � P ↑V ′′

and P ↑V ′′↓V = P .
Furthermore, if the symbols in Σ \Σ′ and in X \X ′ do not occur in the ruleset R,

we have P ↓V ′� P and P ≤ P ↓V ′ . But in general P ↓V ′↑V 6≈ P .

Analogously as for E-P3P, we define precendence shifts:
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Table 1. Ordered Composition
‖ (r2, f) (r2, a) (r2, d)

(r1, f) (r1, f) (r1, f) (r1, f)
(r1, a) (r1 ∧ r2, f) (r1 ∧ r2, a) (r1, a)

(r1, d) (r2, f) (r2, a) (r1 ∧ r2, d)

Table 2. Conjunction
∧ (r2, f) (r2, a) (r2, d)

(r1, f) (r1 ∧ r2, f) (r1 ∧ r2, a) (r1, a)

(r1, a) (r1 ∧ r2, a) (r1 ∧ r2, a) (r1, a)

(r1, d) (r2, a) (r2, a) (r1 ∧ r2, d)

Definition 20 (Precedence Shift). Let P = (V,R, dr) be a privacy policy and j ∈ Z.
Then P + j := (V,R + j, dr) with R + j := {(i + j, g, c, r) | (i, g, c, r) ∈ R} is called
the precedence shift of P by j. We define P − j := P + (−j).

Remark 6 (Precedence Shift). Clearly ∀j ∈ Z : P ≡ P + j.

3.1 Composition of Policies

A framework for privacy policies should allow to start, say, from a company policy,
stating some minimal requirements, and then to add new rules, collected in another
policy, to refine the company policy to a department policy. NAPS supports this through
the composition operator, that refines its first argument by adding the rules of its second
argument with lower priority.

Definition 21 (Composition). Let P1 = (V,R1, dr1), P2 = (V,R′2, dr2) be privacy
policies over a vocabulary V , R′2 := R2−max(R2)+min(R1)−1. Then P1 ‖ P2 :=
(V,R1 ∪R′2, dr1 ∧ dr2) is the (ordered) composition of P2 under P1.

Composition can also be defined functionally, pointwise on the evaluations of two
policies. Differing from E-P3P this is possible, due to the introduction of the evaluation
tag v ∈ {f,a,d}. From Def. 21 (Composition) we get

Lemma 2 (Functional Definition of Composition). For policiesP1,P2 over the same
vocabulary V define the composition e1 ‖ e2 on evaluations e1 = (r1, v1), e2 =
(r2, v2) ∈ E(V ) as in Table 1. Then for all q ∈ Q(V ) and α ∈ Ass(X, M), we
have evalα(P1 ‖ P2, q) = evalα(P1, q) ‖ evalα(P2, q).

By construction, the composition of two policies refines the first policy. Namely,
from Eq. (2), (1) and Lemma 2 we obtain

Lemma 3. For policies P1 and P2 over the same vocabulary, we have P1 ‖ P2 ≤ P1.

3.2 Policy Normalization

Each NAPS policy can be normalized, i. e. transformed into a strongly equivalent policy,
that has only strongly final and strongly amendable rules and only one rule per priority
level, where all final rules are of lower priority than any amendable rule.

Definition 22 (Normalization). A ruleset R over the vocabulary V is called normal-
ized iff i) R = RA ∪ RF ; ii) all rules (i, g, c, r) ∈ RA are strongly amendable; iii)
all rules (i, g, c, r) ∈ RF are strongly final and r = (>,>); iv) max(R) = 0; v) ∀i
s. t. min(R) ≤ i ≤ 0 there is exactly one rule of priority i in R denoted by R(i); and
vi) ∀(i, g, c, r) ∈ RA ∀(i′, g′, c′, r′) ∈ RF : i′ < i.
A policy P = (V,R, dr) is called normalized, iff the ruleset R is normalized.
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Algorithm 3.1: Policy Conjunction

Input: policies P1 = (V, R1, dr1),P2 = (V, R2, dr2)
Output: conjunction policy P = P1 ∧ P2

for i = 1, 2: if Ri not normalized: Ri := norm(Ri);
dr := dr1 ∧ dr2;
R := RA

1 ∪ (RA
2 + min(RA

1 )−max(RA
2 )− 1); // “union” of amendable parts

i := min(R)− 1;
for j := max(RF

1 ) downto min(RF
1 ):

(j, g1, c1, r1) := RF
1 (j);

for k := max(RF
2 ) downto min(RF

2 ):
(k, g2, c2, r2) := R2(k);
R := R ∪ {(i, g1 ∧ g2, c1 ∧ c2, (>,>))}; // “pairwise final conjunction”
i := i− 1;

return P = (V, R, dr)

We always write RA for the subset of strongly amendable rules of a ruleset R,
and RF for the subset of strongly final rules of a ruleset R. If R carries a sub- or a
superscript, so does RA, RF . Due to the page limit we omit the proof of

Lemma 4 (Ruleset & Policy Normalization). There is an algorithm that given a rule-
set R over the vocabulary V generates a normalized ruleset norm(R). From a policy
P = (V,R, dr) we can generate a normalized policy norm(P) := (V,norm(R), dr)
such that norm(P) ≡ P .

3.3 Conjunction of Privacy Policies

If two companies A and B cooperate, it may be necessary to apply the privacy policies
of A and of B with equal priority. Unlike composition, which regards its first argument
as being of higher priority—and thus in general does not refine its second argument—
conjunction combines two policies in equal right and returns a result that weakly refines
both. Specifying the conjunction of two policies such that up-scoping, down-scoping
and composition distribute requires careful consideration of the inner workings of the
policies involved, as up-scoping may introduce new vocabulary items, on which the
effect of the conjunction policy cannot be determined by the functional properties of
the original policies alone.

Definition 23 (Policy Conjunction). Let P1, P2 be privacy policies over a vocabulary
V . The conjunction P = P1 ∧ P2 of P1, P2 is the output of Alg. 3.1.

Although being defined on policies, policy conjunction exhibits the intuitively de-
sired property that the evaluation of P1 ∧P2 can be derived pointwise from the evalua-
tions of P1, P2. Due to the page limit we omit the proof of

Lemma 5 (Functional Properties of Policy Conjunction). For privacy policies P1,
P2 over the same vocabulary V define the conjunction ∧ on evaluations e1 = (r1, v1),
e2 = (r2, v2) ∈ E(V ) as in Table 2. Then for all q ∈ Q(V ) and all α ∈ Ass(X, M)
we have evalα(P1 ∧ P2, q) = evalα(P1, q) ∧ evalα(P2, q).
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A Note on Disjunction Adding a meaningful disjunction operation to NAPS is possible
(without losing closedness). Few use cases impose a disjunctive composition of privacy
policies, however. So here we do not discuss policy disjunction.

4 Algebraic Properties of Operators

Now we can prove intuitive algebraic properties, the NAPS operators were designed
towards, but due to the page limit we must omit the actual proof of

Theorem 2 (Operator Laws). Let P1, P2 be privacy policies on a vocabulary V and
let V ′, V ′′ be vocabularies s. t. V ′ ⊆ V ⊆ V ′′. Then P1∧P1 ≡ P1, P1∧P2 ≡ P2∧P1,
(P1 ∧P2)∧P3 ≡ P1 ∧ (P2 ∧P3), P1 ‖ P1 = P1, (P1 ‖ P2) ‖ P3 = P1 ‖ (P2 ‖ P3),
(P1 ∧ P2) ‖ P3 ≡ (P1 ‖ P3) ∧ (P2 ‖ P3), (P1 ∧ P2) ↑V ′′= (P1 ↑V ′′) ∧ (P2 ↑V ′′),
(P1 ∧ P2) ↓V ′= (P1 ↓V ′) ∧ (P2 ↓V ′), (P1 ‖ P2) ↑V ′′= (P1 ↑V ′′) ‖ (P2 ↑V ′′), (P1 ‖
P2) ↓V ′= (P1 ↓V ′) ‖ (P2 ↓V ′), P1 ∧ P2 . P1, P1 ‖ P2 ≤ P1, P1 ∧ P2 . P1 ‖ P2,
norm(P1) ≡ P1 and reduce(P1) ≡ P1.

The next lemma, the proof of which we also omit due to the page limit, shows
strong equivalence to have the desired property, that strongly equivalent policies remain
strongly equivalent (and thereby also equivalent, i. e. same output under all assignments
and queries) under all operators.

Lemma 6 (Properties of Strong Equivalence). Let P1 ≡ P ′1, P2 ≡ P ′2 policies over
V and let V ′ ⊂ V ⊂ V ′′ then we have P1 ↑V ′′≡ P ′1 ↑V ′′ , P1 ↓V ′≡ P ′1 ↓V ′ , P1∧P2 ≡
P ′1 ∧ P ′2 and P1 ‖ P2 ≡ P ′1 ‖ P ′2.

5 Conclusions

NAPS provides a powerful tool to operate on and reason about privacy policies by pro-
viding useful operators along with intuitive algebraic relations. Compared to E-P3P,
constructing policies seems less involved, as in E-P3P policy evaluation involves a
more complicated preprocessing of rulesets (“rule unfolding”) [5, 4]. E-P3P rulings
can be mapped to NAPS evaluations, opening a possibility to embed E-P3P policies
into NAPS. Still NAPS’ usefulness remains to be proved: a prototype implementation
with an experimental deployment of such a system has to be done to explore practical
strengths and weaknesses. We think the already achieved results justify research in this
direction.
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