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Abstract

In general, the mutual information between two random variables X and Y , I(X;Y ), might
be larger or smaller than their mutual information conditioned on some additional information Z,
I(X;Y |Z). Such additional information Z can be seen as output of a channel C taking as input
X and Y . It is thus a natural question, with applications in fields such as information theoretic
cryptography, whether conditioning on the output Z of a fixed channel C can potentially increase
the mutual information between the inputs X and Y .

In this paper, we give a necessary, sufficient, and easily verifiable criterion for the channel C (i.e.,
the conditional probability distribution PZ|XY ), such that I(X;Y ) ≥ I(X;Y |Z) holds for every joint
distribution of the random variables X and Y . Furthermore, the result is generalized to channels
with n inputs (for n ∈ N), that is, to conditional probability distributions of the form PZ|X1···Xn

.

1 Introduction

The mutual information I(X;Y ) between two random variables X and Y is one of the basic measures
in information theory. It can be interpreted as the amount of information that X gives on Y (or vice
versa). In general, additional information, i.e., conditioning on an additional random variable Z,
can either increase or decrease this mutual information.1 Without loss of generality2, this additional
information Z can be seen as output of a channel C with input (X,Y ), which is fully specified by
the conditional probability distribution PZ|XY .

In the following, we investigate the question whether for a fixed conditional probability distribu-
tion PZ|XY (i.e., a fixed channel C with input (X,Y ) and output Z), conditioning on Z can increase
the mutual information between X and Y . We give a sufficient criterion, depending only on PZ|XY ,
such that this is not the case, i.e., I(X;Y ) ≥ I(X;Y |Z) for all distributions PXY . The criterion
is also necessary in the sense that, if it is not satisfied, there exists a probability distribution PXY

such that I(X;Y ) < I(X;Y |Z). Moreover, since our criterion is basically a simple information the-
oretic expression, it can easily be handled, and the verification of whether it is satisfied by a given
conditional probability distribution PZ|XY is efficient.

One possible application of this result is in the field of information theoretic cryptography, where
it is used for the analysis of secret-key agreement protocols3, but this application is not discussed in
this extended abstract.

This paper is organized as follows. In Section 2, the notation and some definitions are introduced.
The main theorem is stated and proved in Section 3. A generalization of the result to channels with
more than two inputs, i.e., to probability distributions of the form PZ|X1···Xn

for some n ∈ N, is
described in Section 4.

1Let for example X = Y = Z be three (uniformly distributed) binary random variables. Then, conditioning on Z
decreases the mutual information between X and Y . On the other hand, for two independent binary random variables X
and Y , conditioning on Z = X ⊕ Y increases their mutual information.

2at least in the context where only the three random variables X, Y and Z are considered
3See [?] for an example of information-theoretically secure secret-key agreement.
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2 Definitions

Let in the following p be a conditional probability distribution of the form

p : (x, y, z) ∈ X × Y × Z 7−→ p(z|x, y),

i.e., for each pair (x, y) ∈ X × Y, p(·|x, y) is a probability distribution of a random variable with
range Z.

The conditional probability distribution p uniquely defines a channel4 C taking as input two
random variables X and Y with ranges X and Y, respectively, and giving an output Z in the range
Z. The main goal of this paper is to investigate the question whether for such a fixed channel
C conditioning on the channel output Z can increase the mutual information (i.e., the correlation)
between the two inputs X and Y with arbitrary joint distribution PXY . This motivates the following
definition.

Definition 2.1. The conditional probability distribution p is called correlation free if

I(X;Y ) ≥ I(X;Y |Z)

for all PXY , where X, Y and Z are random variables5 distributed according to PXY and PZ|XY := p.

Similar to the joint probability distribution PUV of two random variables U and V , which is
the product of PU and PV if and only if U and V are statistically independent, we will see in
Section 3 that the conditional probability distribution p can be written as a product if and only if it
is correlation free.

Definition 2.2. The conditional probability distribution p is called multiplicative if it is the product
of two functions r and s depending only on (z, x) and (z, y), respectively, i.e.,

p(z|x, y) = r(z, x) · s(z, y)

for all x ∈ X , y ∈ Y and z ∈ Z.

It is easy to decide whether a given conditional probability distribution p is multiplicative. The
following lemma shows that one only has to check the conditional independence of a certain pair of
random variables.

Lemma 2.3. The conditional probability distribution p is multiplicative if and only if

I(X;Y |Z) = 0

for two independent random variables X and Y with uniform distribution on their ranges X and Y,
respectively (i.e., PXY (x, y) = c for some constant c), and Z with PZ|XY := p.

Proof. From

p(z|x, y) = PZ|XY (z|x, y) =
PZ(z) · PXY |Z(x, y|z)

PXY (x, y)
=
PZ(z)
c

· PXY |Z(x, y|z)

it is obvious that p is multiplicative if and only if (for each fixed z ∈ Z with PZ(z) > 0) the
probability distribution PXY |Z=z can be written as a product of a function depending only on x and
a function depending only on y, which is equivalent to the independence of X and Y conditioned on
Z, i.e., I(X;Y |Z) = 0.

3 Main Result

Theorem 3.1. A conditional probability distribution

p : (x, y, z) 7−→ p(z|x, y)

is correlation free if and only if it is multiplicative.

4such that p is its probability transition matrix
5In this work, we restrict to random variables with finite entropy. However, their range might be infinite.
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Proof. If p is not multiplicative, then it follows from Lemma 2.3 that I(X;Y |Z) > 0 for random
variables X, Y and Z with PXY = c (where c is some constant) and PZ|XY = p, while, obviously,
I(X;Y ) = 0. Consequently, conditioning on Z increases the mutual information between X and Y ,
i.e., p is not correlation free.

It thus remains to be shown that if for any random variables X, Y and Z, the conditional
probability distribution PZ|XY is multiplicative, then I(X;Y ) ≥ I(X;Y |Z). The argument will be
subdivided into two parts, where in the first part, the implication is proven for a special case, called
deterministic case. In the second part, we will make use of this result to prove the general case.

Let X, Y and Z be random variables with ranges X , Y and Z, respectively, such that PZ|XY

is multiplicative, i.e., PZ|XY (z|x, y) = r(z, x) · s(z, y). For the deterministic case, we additionally
assume that all values r(z, x) and s(z, y) are either 0 or 1, which obviously implies that PZ|XY (z|x, y)
is also 0 or 1 (for all x, y, z). The value of Z is thus uniquely determined by X and Y , i.e.,

H(Z|XY ) = 0. (1)

The main idea for the proof of the deterministic case is to introduce an additional random variable
Y ′ with range Y and PY ′|ZX(y|z, x) := PY |Z(y|z) (for all x, y, z). Hence we have

I(Y ;Z) = I(Y ′;Z) (2)
I(X;Y ′|Z) = 0, (3)

i.e., X → Z → Y ′ is a Markov chain. Moreover, the value of Z is uniquely determined by the values
of X and Y ′, i.e.,

H(Z|XY ′) = 0. (4)

This can be seen as follows. Assume by contradiction that H(Z|XY ′) > 0. Then there exist (at
least) two different values z1 6= z2 and x, y such that PXY ′Z(x, y, z1) > 0 and PXY ′Z(x, y, z2) > 0.
Since for i = 1 and i = 2

0 <
∑

y

PXY ′Z(x, y, zi) =
∑

y

PXY Z(x, y, zi) = r(zi, x) ·
∑

y

s(zi, y) · PXY (x, y),

and similarly
0 < s(zi, y) ·

∑
x

r(zi, x) · PXY (x, y),

the factors r(zi, x) and s(zi, y) must be nonzero and thus by assumption be equal to 1. Consequently,
the probabilities PZ|XY (z1|x, y) and PZ|XY (z2|x, y) are both equal to 1, which is a contradiction.

From (1) and (4) the expressions I(XY ;Z) and I(XY ′;Z) are both equal to H(Z) and thus,
using (2),

I(X;Z) + I(Y ;Z) = I(X;Z) + I(Y ′;Z) ≥ I(X;Z) + I(Y ′;Z|X) = I(XY ′;Z) = I(XY ;Z) (5)

where the inequality follows from the fact that X → Z → Y ′ is a Markov chain (see (3)). Making
use of some basic information theoretic equalities shows that

I(X;Z) + I(Y ;Z) ≥ I(XY ;Z) ⇐⇒ I(X;Y ) ≥ I(X;Y |Z), (6)

which concludes the proof for the deterministic case.
To prove the general case, we again assume that for given random variables X, Y and Z the

conditional probability distribution PZ|XY is multiplicative, but this time, the factors r and s of
PZ|XY might take on any value in the interval [0, 1].6

The main idea is to reduce this case to the deterministic case by constructing new random
variables X̄, Ȳ and Z̄ with

I(X;Y ) = I(X̄; Ȳ ) (7)

and for which the conditional probability distribution PZ̄|X̄Ȳ is again multiplicative, i.e., for all x, y
and z

PZ̄|X̄Ȳ (z|x, y) = r̄(z, x) · s̄(z, y) (8)

6This is the most general case, since any two factors r and s can be replaced by r̃ := r · c and s̃ := s/c where c is a
function only depending on z, such that the function values of r̃ and s̃ are in the interval [0, 1].
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where r̄(z, x), s̄(z.y) ∈ {0, 1}. Additionally, the range of Z̄ should consist of two disjoint sets A and
B, where

I(X̄; Ȳ |Z̄, Z̄ ∈ A) ≥ I(X;Y |Z) (9)
I(X̄; Ȳ |Z̄, Z̄ ∈ B) ≥ I(X;Y ). (10)

Then, from the result in the deterministic case, I(X̄; Ȳ ) ≥ I(X̄; Ȳ |Z̄), and thus

I(X;Y ) = I(X̄; Ȳ ) ≥ I(X̄; Ȳ |Z̄) = P [Z̄ ∈ A] · I(X̄; Ȳ |Z̄, Z̄ ∈ A) + P [Z̄ ∈ B] · I(X̄; Ȳ |Z̄, Z̄ ∈ B)
≥ P [Z̄ ∈ A] · I(X;Y |Z) + (1− P [Z̄ ∈ A]) · I(X;Y )

which implies I(X;Y ) ≥ I(X;Y |Z).
The main task is thus to find such a construction of random variables X̄, Ȳ and Z̄ satisfying

(7), (8), (9) and (10), which will be sketched in the remaining part of this section. However, in this
extended abstract, we skip the proof that the following construction fulfills the above conditions.

Without loss of generality, assume that the ranges X , Y and Z of the random variables X, Y
and Z, respectively, are finite and that the function values of r and s are rational numbers.7 We
thus can write

r(z, x) =
φ(z, x)
ρ

s(z, y) =
ψ(z, y)
σ

with appropriate constants ρ, σ ∈ N and functions φ and ψ with ranges {0, 1, . . . , ρ} and {0, 1, . . . , σ},
respectively. Moreover, to simplify the notation, set Z = {0, 1, . . . , γ−1} for an appropriate γ ∈ N0.

Let U and V be independent and uniformly distributed random variables with ranges U :=
{0, 1, . . . , α− 1} and V := {0, 1, . . . , β − 1}, respectively, where α := ρ · γ and β := σ · γ. Moreover,
for all x ∈ X and y ∈ Y let Px and Qy be independent and uniformly distributed random variables
with ranges U and V, respectively. In the following, the |X |-tuple (Px∈X ) will be denoted as P, and
the |Y|-tuple (Qy∈Y) as Q. The random variables X̄ and Ȳ should then be defined as triples (X,U,Q)
and (Y, V,P), respectively. Condition (7) is thus an immediate consequence of the independence of
U , V , P and Q.

For the construction of Z̄ we need some additional notation. Let for all x ∈ X , y ∈ Y and z ∈ Z
the sets Ax,z and By,z be defined as

Ax,z := {u ∈ U | z ≤ u

ρ
< z + r(z, x)} By,z := {v ∈ V | z ≤ v

σ
< z + s(z, y)}.

Note that for any given x, the sets Ax,z (for all z), and for any given y, the sets By,z are disjoint.
Set

Cx,y := {(u, v) ∈ U × V | ∃ z ∈ Z : u ∈ Ax,z ∧ v ∈ By,z}.

It is easy to verify that, for fixed x, y, u, v with (u, v) ∈ Cx,y, there is exactly one element z ∈ Z such
that u ∈ Ax,z and v ∈ By,z, which we will denote as z(x, y, u, v). Furthermore, the cardinality of the
set Cx,y is equal to ρ·σ, and thus the cardinalities of both Cx,y and its complement C̄x,y := U×V\Cx,y

are independent of x and y. This allows us to define a family of functions

Γk = (Γ(1)
k ,Γ(2)

k ) : X × Y −→ U × V

parameterized by k ∈ {1, . . . κ} where κ := |C̄x,y|, such that for each fixed pair (x, y) ∈ X × Y the
function

k 7−→ Γk(x, y) = (Γ(1)
k (x, y),Γ(2)

k (x, y)) (11)

is a bijection between {1, . . . , κ} and C̄x,y.
The random variable Z̄ will be defined such that the value of Z̄ is uniquely defined by X̄ =

(X,U,Q) and Ȳ = (Y, V,P). We will distinguish two cases: (Ū , V̄ ) ∈ CX,Y and (Ū , V̄ ) ∈ C̄X,Y ,
where Ū := U − PX (mod α) and V̄ := V − QY (mod β). In the first case (if (Ū , V̄ ) ∈ CX,Y ), let
the random variable Z̄ be defined as the triple (Z ′,P,Q) with Z ′ := z(X,Y, Ū , V̄ ) and let A be the
set of all these values of Z̄.

7It is easy to verify that any triple of random variables X, Y and Z with multiplicative conditional probability
distribution PZ|XY can be approximated by a triple of random variables X ′, Y ′ and Z′ having finite range and for which
PZ′|X′Y ′ is multiplicative with rational factors, such that the mutual information between X and Y (given Z) is arbitrarily
close to the mutual information between X ′ and Y ′ (given Z′).
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If (Ū , V̄ ) ∈ C̄X,Y , then let Z̄ be a triple (K,U,V) where K satisfies

ΓK(X,Y ) = (Ū , V̄ ), (12)

and where U := (Ux∈X ) and V := (Vy∈Y) are |X |- and |Y|-tuples with

Ux := Γ(1)
K (x, Y ) + Px (mod α) ∀x ∈ X (13)

Vy := Γ(2)
K (X, y) +Qy (mod β) ∀y ∈ Y. (14)

Note that, since the function (11) is a bijection, the value of K is uniquely determined by (12). B is
then defined as the set of all possible values of Z̄ in this case.

4 Generalization

The conditional probability distribution PZ|XY studied in the previous sections corresponds to a
channel taking a pair of random variables as input. However, it is a natural question whether our
considerations can be extended to channels with more than two inputs.

Let therefore p be a conditional probability distribution of the form

p : (x1, . . . , xn, z) 7−→ p(z|x1, . . . , xn)

for some n ∈ N. Then, there is a canonical extension of Definition 2.2 including this more general
type of conditional probability distributions.

Definition 4.1. The conditional probability distribution p is called multiplicative if it can be written
as a product

p(z|x1, . . . , xn) = r1(z, x1) · · · rn(z, xn)

for appropriate functions r1, . . . , rn.

On the other hand, the generalization of the definition of correlation freeness is motivated by the
expression

I(X;Z) + I(Y ;Z) ≥ I(XY ;Z)

which is equivalent to I(X;Y ) ≥ I(X;Y |Z) (see (6)).

Definition 4.2. The conditional probability distribution p is called correlation free if

n∑
i=1

I(Xi;Z) ≥ I(X1 · · ·Xn;Z)

for any choice of random variables X1, . . . , Xn and Z with PZ|X1···Xn
:= p.

It turns out that, for these extended definitions, the equivalence between correlation freeness and
the multiplicative property of conditional probability distributions still holds.

Theorem 4.3. A conditional probability distribution

p : (x1, . . . , xn, z) 7−→ p(z|x1, . . . , xn)

is correlation free if and only if it is multiplicative.

Proof. We first show by induction that any multiplicative conditional probability distribution p
is correlation free. Let therefore X1, . . . , Xn and Z be random variables such that PZ|X1···Xn

is
multiplicative and assume that the implication is proven for probability distributions conditioned on
n− 1 random variables, i.e.,

n−1∑
i=1

I(Xi;Z) ≥ I(X1 · · ·Xn−1;Z). (15)

Hence,
n∑

i=1

I(Xi;Z) ≥ I(X1 · · ·Xn−1;Z) + I(Xn;Z) ≥ I(X1 · · ·Xn;Z)

where the last inequality is equivalent to I(X1 · · ·Xn−1;Xn) ≥ I(X1 · · ·Xn−1;Xn|Z) (see (6)) and
therefore a direct consequence of Theorem 3.1. (Note that if PZ|X1···Xn

is multiplicative, then PZ|XY
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for X = (X1, . . . , Xn−1) and Y = Xn is multiplicative as well.) Since (15) is trivially satisfied for
n = 2, the assertion follows by induction on n.

It remains to be proven that correlation freeness of a probability distribution p implies that p is
multiplicative. First, note that for random variables X1, . . . , Xn and Z

I(X1 · · ·Xn;Z) ≥
n∑

i=1

I(Xi;Z). (16)

if X1, . . . , Xn are mutually independent. Second, recall that 0 = I(X;Y ) < I(X;Y |Z) for indepen-
dent and uniformly distributed random variables X and Y if PZ|XY is not multiplicative (see first
section of the proof of Theorem 3.1). Again (see (6)), this is equivalent to the inequality

I(XY ;Z) > I(X;Z) + I(Y ;Z). (17)

Assume by contradiction that p is not multiplicative, and let X1, . . . , Xn be uniformly distributed
independent random variables and Z be distributed according to PZ|X1···Xn

:= p. Then, there is
an index k such that PZ|XY is not multiplicative for X := Xk and Y := X1 · · ·Xk−1Xk+1 · · ·Xn.
Hence, from (17) and (16)

I(X1 · · ·Xn;Z) > I(Xk;Z) + I(X1 · · ·Xk−1Xk+1 · · ·Xn;Z) ≥
n∑

i=1

I(Xi;Z),

i.e., PZ|X1···Xn
is not correlation free.

5 Concluding Remarks

We have investigated for which cases the mutual information between arbitrarily distributed random
variables X and Y can not be increased when conditioning on additional information Z about X
and Y , which is determined by a fixed conditional probability distribution PZ|XY . Clearly, Z can
be considered as the output of a channel C with two inputs, X and Y , and probability transition
matrix PZ|XY . Our main theorem gives a necessary and sufficient criterion for the channel C, i.e.,
for PZ|XY , such that I(X;Y ) ≥ I(X;Y |Z) for all distributions PXY . Furthermore, we have shown
that this result can be generalized to channels with more than two inputs.

Combining the main Theorem 3.1 and Lemma 2.3, our criterion and its consequence can be
formulated as follows: If for a fixed channel C specified by PZ|XY , conditioning on the output Z
does not increase the mutual information between independent and uniformly distributed inputs X
and Y ,8 then conditioning on the output of C can not increase the mutual information between
inputs X and Y having any arbitrary joint distribution PXY .

8Since the mutual information between two independent inputs X and Y is zero, this means that I(X; Y |Z) = 0.
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