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Abstract. A pseudorandom permutation (PRP) is a (keyed) permutation which, under a
random key, can only be distinguished from a uniformly chosen permutation with negligible
advantage over random guessing by a computationally bounded distinguisher. This paper
considers the natural weakening of the PRP notion, called an ε-PRP, where we only require
the advantage to be bounded by some non-necessarily negligible quantity ε: It is a natu-
ral and fundamental question – which we consider in this paper and refer to as security
amplification – to efficiently construct a PRP from an ε-PRP for any ε < 1.
The simplest approach is the cascade (i.e, sequential composition) of weak PRPs, but deter-
mining its security-amplifying properties is a long-standing open problem: To date, partial
results are limited to constant-length cascades [Luby and Rackoff (STOC ’86), Myers ’99],
to the case ε < 1

2 , or to alternative, less efficient, approaches tweaking the cascade [Maurer
and Tessaro (CRYPTO 2009)]. This paper closes this gap: we prove that the cascade of m
ε-PRPs is an ((m − (m − 1)ε)εm + ν)-PRP, where ν is a negligible function. This implies
security amplification for all ε < 1− 1

poly , and the result extends to two-sided PRPs, i.e., to
the case where the inverse of the given permutation is also queried. Furthermore, we show
that the bound is essentially tight.
Our approach relies on the first hardcore lemma for computational indistinguishability of
interactive systems, which is our main technical and conceptual contribution, and is of
independent interest: For any two systems S and T, whose state does not depend on the
interaction, and which no efficient adversary can distinguish with advantage better than ε,
we show that there exist events A and B on the choices of the respective states, occurring
each with probability at least 1−ε, such that S and T are computationally indistinguishable
conditioned on these events. As a corollary of the lemma, security amplification for the
cascade follows from the fact, which we also prove, that for (essentially) all ε < 1 − 1

N
the cascade of two independent (non-uniform) random permutations on an N -element set,
whose distributions have both min-entropy at least log(N !)−log

(
(1− ε)−1

)
, is (information

theoretically) indistinguishable from a uniform random permutation.

Keywords: Foundations, Security Amplification, Computational Indistinguishability, Pseu-
dorandomness, Hardcore Lemmas, Block Cipher Cascading.



1 Introduction

1.1 Motivation: Security Amplification of PRPs

The security of most block-cipher based cryptographic schemes relies on the unproven assumption that
the block cipher is a so-called pseudorandom permutation (PRP), i.e., a keyed family of permutations
E = {Ek}k∈K on a set X such that no computationally bounded adversary (usually called a distin-
guisher) is able to decide correctly whether it is given access to EK : X → X under a random secret key
K ∈ K or to a uniformly chosen permutation X → X , except with a negligible advantage over random
guessing. Continuous progress in cryptanalysis casts however some doubt as to whether block-cipher de-
signs such as the Advanced Encryption Standard (AES) are indeed secure PRPs. It is therefore a prudent
approach, as well as a central question in theoretical cryptography, to investigate weaker assumptions
on a block cipher which are sufficient to efficiently solve a certain cryptographic task at hand.

A natural weakening of the PRP assumption, considered in this paper, is to only assume that the
best distinguishing advantage of a computationally bounded adversary is bounded by a quantity ε < 1,
where ε does not need to be a negligible function, but may also be a constant or even a quantity
moderately converging to one as a function of the security parameter.1 We consequently call a primitive
satisfying this assumption an ε-PRP: Clearly, AES is much more likely to be a 0.99-PRP, rather than
a fully-secure PRP.

This paper considers the natural question of security amplification of PRPs, i.e., we ask for con-
structions transforming an ε-PRP into a fully secure one. Ideally, such a construction should am-
plify security for arbitrary ε < 1 and call the weaker block cipher as few times as possible (that is,
ω(log n) · (log (1/ε))−1 times for security parameter n). This is in the same spirit of the huge body
of literature on security amplification, initiated by Yao [46] in the context of one-way functions, and
extended to a number of other cryptographic primitives, including (but not limited to) regular OWFs
and OWPs [14, 17], two-party protocols [1, 39, 42, 45, 18, 16, 19, 4], key agreement and public-key encryp-
tion [10, 21, 23], and collision-resistant hash functions [3].

1.2 Our Result: Security Amplification of PRPs by Cascading

The most natural approach to strengthening a weak PRP E is to consider the cascade of length m which
outputs

E′k1,...,km(x) := (Ek1 ◦ · · · ◦ Ekm)(x)

on input x and for keys k1, . . . , km (which are chosen independently), where ◦ denotes the (sequential)
composition of permutations.

Despite its apparent simplicity, determining the security amplifying properties of the cascade has
been a long standing open problem. On the one hand, Luby and Rackoff [25] and Myers [35] showed that
the cascade of c ε-PRPs is a ((2− ε)c−1εc + ν)-PRP for any constant c, where ν is a negligible additive
term, but this result is not sufficient to infer that a sufficiently-long cascade yields a fully-secure PRP
for a non-negligible ε. On the other hand, Maurer and Tessaro [33] showed that the cascade of arbitrary
(polynomial) length m is a (2m−1εm + ν)-PRP, but this bound only implies security amplification for
ε < 1

2 and is clearly not tight in view of the superior result for the constant-length case of [25, 35]. This
leaves open the question of determining the exact behavior of the cascade of length m.

1 Alternatives are restricting the type of interaction allowed by a distinguisher (e.g., by limiting it to non-adaptive or ran-
dom queries [38, 6, 31, 32]) or only requiring unpredictability of the block cipher output, rather than pseudorandomness
(cf. e.g. [8, 9]).
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Our Result on Cascades. This paper closes this gap by providing an exact characterization of
the security amplification properties of the cascade: We prove that the cascade of m ε-PRPs (with
domain X ) is security amplifying for essentially any ε < 1 − 1

|X | .
2 In particular, we show that it is a

((m− (m− 1)ε)εm + ν)-PRP, and the result extends to two-sided ε-PRPs, where the inverse can also be
queried. We additionally prove our bound to be essentially tight. This result arises from the application
of new generic techniques in the context of security amplification, which we illustrate in the next section
at an informal level and which are of independent interest. It is our belief that they can potentially be
applied to a number other questions within the wider scope of complexity-theoretic cryptography.

Further Related Work. Other less efficient constructions of fully secure PRPs from ε-PRPs exist:
Maurer and Tessaro [34] showed that XORing two independent keys at both ends of the cascade yields
an (εm + ν)-PRP. Moreover, similar results [36, 7, 33] are known for strengthening the security of pseu-
dorandom functions (PRF), where one drops the permutation requirement, but all these constructions
fall short of implementing a permutation when instantiated with a keyed permutation, and an extra step
(e.g., using [26]) is required to restore the permutation property. While these results may be considered
sufficient for many purposes, we feel that the security-amplification result of this paper is important
for at least two main reasons: First, we show that similar amplification properties are achieved with
better efficiency by the most natural construction. Second, settling the open question of determining the
security amplification properties of the plain cascade leads to the development of a new set of generic
techniques which promise to be applicable in other problems.

We also point out that cascades have also been studied in other contexts. A first line of research [11,
28, 2, 12] has been devoted to studying generic attacks against the cascade of block ciphers. Furthermore,
security-amplifying properties of cascades have been previously studied in the information-theoretic
setting [44, 29, 30, 13] (i.e., with indistinguishability with respect to unbounded distinguishers), where,
to the best of our knowledge, all obtained bounds are not tight. Finally, a line of work showed that the
cascade of non-adaptively secure PRPs / PRFs is not an adaptively secure PRF / PRPs [37, 40], unless
key agreement does not exist [41]. In particular, the statement has been shown to hold with respect to
computationally unbounded distinguishers [29, 30, 13].

1.3 Our General Paradigm: The Interactive Hardcore Lemma and High-Entropy
Permutations

A fundamental property of any two finite random variables X and Y (taking values from the same
range) is that it is always possible to define events A and B on them (by means of conditional probability
distributions PA|X and PB|Y ) such that:

(i) X and Y are equally distributed conditioned on the respective events, i.e., PX|A = PY |B,
(ii) P [A] = P [B] = 1 − d(X,Y ), where d(X,Y ) is the so called statistical distance, which equals the

best advantage of a computationally unbounded distinguisher in distinguishing X and Y .

A computational version of this statement is due to Maurer and Tessaro [34], and was used to prove se-
curity amplification results for PRGs. In this paper, we take this approach one step further by presenting
a computational version of the above statement for discrete interactive systems.

CC-Stateless Systems. More specifically, we consider the general class of interactive systems called
convex-combination stateless (or simply cc-stateless) [33], which includes a large number of cryptographic
systems. These systems have the property that the answer of each query can be seen as only depending

2 This restriction is necessary, as a permutation family with a fixed point (independent of the key value) is at best a
(1 − 1

|X| )-PRP, and the cascade obviously preserves such a fixed point. However, since efficient security amplification

cannot be achieved for such high ε (m would be super-polynomial even assuming optimal security amplification), the
restriction is irrelevant.
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on the input of this query and on an initial state, but does not depend on previous queries and their
answers. A simple example of a cc-stateless system is the system implementing a permutation EK for
a keyed family of permutations {Ek}k∈K and a uniform random key K ∈ K. A further example is
a uniform random permutation (URP) P : X → X , a system choosing a permutation P : X → X
uniformly at random, and answering each query x as P (x). Moreover, a randomized encryption scheme
where each encryption depends on the random key and some fresh randomness is also cc-stateless.

We stress that being cc-stateless is a property of the input-output behavior of a system, and not of
its actual implementation: An implementation using such an initial state may be inefficient (e.g., due
to the initial state being very large), but at the same time an efficient implementation of a cc-stateless
system may indeed be fully stateful. For example, an efficient implementation of a URP does keep
an interaction-dependent state and employs lazy sampling, returning for each new query a uniformly
distributed value among those not returned yet.

The Hardcore Lemma Our main technical tool is the Hardcore Lemma (HCL) for computational
indistinguishability (Theorem 2): Informally, it states that if all computationally bounded distinguishers
only achieve advantage at most ε in distinguishing two cc-stateless systems S and T, then there exist
events A and B, defined on the respective initial states of (the cc-stateless representations of) S and T,
such that the following holds:

(i) The systems S and T are computationally indistinguishable conditioned on the respective events
A and B.

(ii) Both events occur with probability at least 1− ε.
In addition, applications of the HCL typically require the ability to efficiently simulate S and T under
the assumption that the associated events A and B occur (or do not occur), possibly with the help of
some short (but not necessarily efficiently-samplable3) advice. In general, it is unclear whether this is
possible given any two events satisfying (i) and (ii), even if both systems are efficiently implementable.

As an illustrative example, let S = EK and T = P, where K ∈ K is uniformly distributed, E =
{Ek}k∈K an efficiently-computable family of permutations, and P is a URP, where all permutations
are on the n-bit strings. If E is an ε-PRP, the HCL yields an event A defined on K and an event B
defined on a uniformly chosen permutation table P , both occurring with probability at least 1− ε, such
that EK′ (for K ′ sampled from PK|A) and a system P′ (implementing a permutation table P ′ sampled
from PP |B) are computationally indistinguishable. While EK′ is efficiently implementable given K ′, a

representation of P ′ requires 2Θ(n) bits, and it is unclear how to define a short advice (i.e., with length
poly(n)) that can be used to efficiently simulate P′. To overcome this issue, we will show that one can
always find events A and B with the property that such advice exists as long as S and T are efficiently
implementable. This will be the major challenge in proving the HCL for the interactive setting.

The core of our proof is a tight generalization (Theorem 1) of Impagliazzo’s HCL [24] to the setting
of guessing a random bit given access to some interactive system whose behavior is correlated with the
bit value.

Cascade of Permutations with High Min-Entropy.We briefly illustrate how the HCL is used to
prove our bounds for the cascade of ε-PRPs. The main observation is that P ′ as above has min-entropy
at least

H∞(P ′) = log

(
min
π

1

P [P ′ = π]

)
= log

(
min
π

P [B]

P [P = π] · P
[
B
∣∣P = π

]) ≥ log (2n!)− log

(
1

1− ε

)
,

i.e., at most log
(
(1− ε)−1

)
away from the maximal achievable min-entropy. Although this gap poten-

tially makes P′ easily distinguishable from a URP, we prove (Theorem 3) that the cascade of (at least)

3 Our main result is in the non-uniform setting, thus efficient samplability is not a requirement.
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two such permutations is indistinguishable from a URP for computationally unbounded distinguishers
making at most an exponential number of queries and even when allowing queries to the inverse. (The
proof uses techniques from the random systems framework [27], and is of independent interest.)

The main security amplification result (Theorem 4) roughly follows from the observation that by the
above at least two (independent) permutations EKi and EKj (for i 6= j) in the cascade EK1◦· · ·◦EKm (for
independent keys K1, . . . ,Km) are computationally indistinguishable from P′, except with probability
εm + m(1 − ε)εm−1, and in this case the cascade is computationally indistinguishable from a URP by
Theorem 3. The final bound follows from a more fine-grained analysis.

Uniform vs. Non-Uniform Proofs. The results of this paper are formulated in a concrete, non-
uniform computational model. This simplifies the presentation considerably and helps conveying the
main ideas. Appendix F highlights the changes required in order to obtain uniform statements and
proofs.

2 Preliminaries

Calligraphic letters X ,Y, . . . denote sets and events, upper-case letters X,Y, . . . random variables (with
expected values E [X] ,E [Y ] , . . .), and lower-case letters x, y, . . . the values they take. Moreover, P[A] is
the probability of an event A (we denote as A its complement) and we use the shorthands PX(x) :=
P[X = x], PX|Y (x, y) := P[X = x|Y = y], PXA|Y B(x, y) := P[A∧X = x|B∧Y = y], etc. Also, PX , PX|Y ,

PAX|BY denote the corresponding (conditional) probability distributions,4 and x
$← PX is the action of

sampling a value x with distribution PX . (We use x
$← S to denote the special case where x is drawn

uniformly from a finite set S.) The statistical distance d(X,Y ) (or d(PX ,PY )) of X and Y (both with
range S) is defined as d(X,Y ) := 1

2

∑
x∈S |PX(x)− PY (x)| =

∑
x:PX(x)≥PY (x) (PX(x)− PY (x)). Also,

recall that a function is negligible if it vanishes faster than the inverse of any polynomial.

Computational Model.We consider interactive randomized stateful algorithms in some a-priori fixed
RAM model of computation. Such an algorithm keeps a state (consisting, say, of the contents of the
memory space it employs), and answers each query depending on the input of this query, some coin
flips, the current state (which is possibly updated), and (possibly) one or more queries to an underlying
system. It is also convenient to denote by A[σ] the algorithm obtained by setting the state of A to σ
(provided σ is a compatible state), and then behaving according to A’s description. We say that A has
time complexity tA (where tA is a function N × N → N) if the sum of the length of the description
of A, of s, and the total number of steps of A is at most tA(q, s) for all sequences of q queries, all
compatible initial states with size s, and all compatible interactions with an underlying system. We use
the shorthand tA(q) := tA(q, 0). Furthermore, sA : N → N is the space complexity of A, where sA(q) is
the worst-case amount of memory used by A when answering any q queries.

Systems and Distinguishers.This paper considers abstract discrete interactive systems [27], denoted
by bold-face letters S,T, . . ., taking as inputs queries X1, X2, . . . and returning outputs Y1, Y2, . . .. Such
systems may be implemented by an interactive algorithm A (in which case we sometimes write A as
a placeholder for the system it implements to explicit this fact), but may also arise from an arbitrary
random process. The input-output behavior of the system S is fully described by the (infinite) family of
conditional probability distributions pS

Yi|XiY i−1 (for i ≥ 1) of the i-th output Yi given the first i queries

Xi = [X1, . . . , Xi], and the first i − 1 outputs Y i−1 = [Y1, . . . , Yi−1]. In general, every statement that
involves a system S holds for any realization of the system S, i.e., it only depends on its input-output
behavior. In particular, we say that two systems S and T are equivalent, denoted S ≡ T, if they have
the same input-output behavior, i.e., pS

Yi|XiY i−1 = pT
Yi|XiY i−1 for all i ≥ 1. Moreover, we say that an

algorithm A implements the system S if A ≡ S.

4 In particular, PX|Y and PAX|BY take two arguments corresponding to all possible values of X and Y , respectively.
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A distinguisher D is a special type of system which interacts with another system S by means of
q queries and outputs a decision bit D(S) depending on their outputs: Its advantage in distinguishing
systems S and T is

∆D(S,T) := |P [D(S) = 1]− P [D(T) = 1]| .
Moreover,∆q(S,T) is the best distinguishing advantage∆D(S,T) over all q-query D, whereas∆t,q(S,T)
is used when the maximization is restricted to distinguishers implemented by an algorithm with time
complexity t.

Stateless Systems.A system S is called stateless if the i-th answer Yi only depends on the i-th query
Xi, i.e., there exists pSY |X such that pS

Yi|XiY i−1(yi, x
i, yi−1) = pSY |X(yi, xi) for all i ≥ 1, xi = [x1, . . . , xi],

and yi = [y1, . . . , yi]. Furthermore, S is convex-combination-stateless (or simply cc-stateless) [33] if there
exists a system T(·) accessing a random variable S (called the initial state) such that S ≡ T(S) and
T(s) is stateless for all values s taken by S. To save on notation, we usually write S(·) instead of T(·),
but we stress that S(·) and S are different objects, despite their notational similarity. We refer to S(S)
as the cc-stateless representation of S.

It is crucial to remark that being cc-stateless is a property of the input-output behavior of a system:
Its (efficient) implementation may well be stateful, and its cc-stateless representation may be completely
inefficient (e.g., because the description of the initial state is even too large to be processed by an efficient
algorithm).

Random Functions and Permutations. A system F taking inputs from a set X and returning
outputs in Y is a random function X → Y if for any two equal queries Xi = Xj we have Yi = Yj for the
respective answers. Furthermore, if X = Y, it is called a random permutation if Xi 6= Xj also implies
Yi 6= Yj . Typical (cc-stateless) examples are uniform random function (URF) R : X → Y, which answers
according to a uniformly chosen function X → Y, a uniform random permutation (URP) P : X → X ,
implementing a uniformly chosen permutation X → X , or EK for a permutation family {Ek}k∈K and a
random K ∈ K.

The initial state of a cc-stateless random function F can always be seen without loss of generality
as a (randomly chosen) function table F according to which F answers its queries, and usually write
F(x) instead of F (x). In particular, the inverse Q−1 of a cc-stateless permutation Q is well-defined,
and 〈Q〉 is the two-sided random permutation which allows both forward queries (x,+) returning Q(x)
as well as backward queries (y,−) returning Q−1(y). The cascade Q′BQ′′ of two random permutations
is the system which on input x returns Q′′(Q′(x)), i.e., it implements the composition of the associated
permutation tables. (This extends naturally to longer cascades.) Note in particular that for any cascade
we have Q1 B · · ·B Qm ≡ P whenever there exists i such that Qi ≡ P for a URP P. Moreover, we let
〈Q′〉B 〈Q′′〉 := 〈Q′ B Q′′〉.

An efficiently implementable family of permutations E = {Ek}k∈K with domain X and indexed by
keys k ∈ K is an ε-pseudorandom permutation (ε-PRP) if ∆t,q(EK ,P) ≤ ε for all polynomially bounded
t and q, a uniform K ∈ K, and a URP P. It is a two-sided ε-PRP if 〈EK〉 is efficiently implementable
and ∆t,q(〈EK〉 , 〈P〉) ≤ ε for all polynomially bounded t and q.

3 Hardcore Lemmas for Interactive Systems

3.1 System-Bit Pairs, Measures, and State Samplers

We consider the general setting of system-bit pairs [33] (S, B) consisting of a bit B (with an associated
probability distribution PB), and a system S = S(B) whose behavior depends on the outcome of the
bit B. A system-bit pair (S, B) is to be interpreted as a system which parallely composes S and a
correlated bit B (which is initially chosen, before any interaction with S has taken place). The notion
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of a cc-stateless system-bit pair (S(S), B(S)) is obtained naturally. Also, an implementation A(S,B) of
a system-bit pair (S, B) is without loss of generality an algorithm which outputs the bit B and then
simulates the system S(B).

We associate with every system-bit pair (S, B) a game where an adversary A interacts with S(B)
and outputs a binary guess A(S(B)) ∈ {0, 1} for B: Its guessing advantage is defined as the quantity

GuessA(B |S) := 2 · P[A(S(B)) = B]− 1 ∈ [−1, 1].

If GuessA(B |S) = 1, then A always guesses B correctly, whereas GuessA(B |S) = −1 means that
A is always wrong (though flipping A’s output bit yields an adversary which is always correct.) The
shorthand Guesst,q(B |S) denotes the best guessing advantage taken over all adversaries with time
complexity t and issuing at most q queries to S.

Example 1. An example is the (cc-stateless) system-bit pair (R, B) for a URF R : X → {0, 1} and
B := ⊕x∈XR(x) is the parity of its function table. It is easy to see that Guessq(B |R) = 0 for all
q < |X |.
Example 2. If (F, B) is such that B is uniform, and F behaves as a system S if B = 0, and as another
system T if B = 1, then GuessD(B |F) = ∆D(S,T) for all D by a standard argument. Note that if
both S and T are cc-stateless, then (F, B) is also cc-stateless.

Measures. A measure M for a cc-stateless system S ≡ S(S), where S ∈ S is the initial state, is a
mappingM : S → [0, 1]. Its density is defined as µ(M) := E [M(S)] =

∑
s∈S PS(s) ·M(s). The measure

M is naturally associated with a probability distribution PM on S such that PM(s) := PS(s) · M(s) ·
µ(M)−1 for all s ∈ S. Also, we define the complement of a measure M as the measure M such that

M(s) := 1−M(s) for all s ∈ S. We repeatedly abuse notation writing S
$←M instead of S

$← PM.
Traditionally, measures are seen as “fuzzy” subsets of S. Alternatively, it is convenient to think of

M in terms of a conditional probability distribution PA|S with PA|S(s) :=M(s) which adjoins the event
A on the choice of S: In particular, µ(M) = P[A], PM = PS|A, and PM = PS|A. In the following, we
stick to measures for stating and proving our hardcore lemmas, while an event-based view will be useful
when exercising these results.

State Samplers. Ideally, the hardcore lemma for a cc-stateless system-bit pair (S, B) ≡ (S(S), B(S))
(for initial state S ∈ S) states that if Guesst,q(B |S) ≤ ε, then there exists a measure M on S such

that (i) µ(M) ≥ 1 − ε and (ii) Guesst′,q′(B(S′) |S(S′)) ≈ 0 for S′ $← M and t′, q′ as close as possible
to t, q. Whenever S(S) is a random variable, this is equivalent to (a tight) version of Impagliazzo’s
Hardcore Lemma [22]. However, applications of the hardcore lemma (as the one we give later in this
paper) require the ability, possibly given some short advice, to efficiently simulate (S(S′), B(S′)) for

S′ $← M or (S(S′′), B(S′′)) for S′′ $← M.5 While in the context of random variables the advice is
generally a sample of S′ itself, this approach fails in the setting of interactive systems: Recall that the
representation (S(S), B(S)) is possibly only a thought experiment, and the description of S′ may be
of exponential size, or no efficient algorithm implementing (S, B) from S′ exists, even if the system-bit
pair itself is efficiently implementable.

To formalize the concept of an advice distribution, we introduce the notion of a state sampler for a
cc-stateless system (such as e.g. a system-bit pair).

Definition 1 (State Samplers). Let S ≡ S(S) be a cc-stateless system with implementation AS and
S ∈ S, let ζ1, ζ2 ∈ [0, 1], and let M : S → [0, 1] be a measure for S. A (ζ1, ζ2)-(state) sampler O for M
and AS with length ` is a random process O such that:

5 Formally, one actually needs to prove that Guesst′,q′(B(S′) |S(S′)) ≈ 0 holds even given access to the advice: While
this is implicit in the non-uniform setting (every adversary with advice can be turned in an equally good one without
advice), the proof is more challenging in the uniform setting, cf. e.g. [21] and Appendix F.
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(i) O always returns a pair (σ, z) with σ being a valid state for AS with |σ| ≤ ` and z ∈ [0, 1];

(ii) For (Σ,Z)
$← O, we have6

(AS[Σ], Z) ≡ (S(S), Z ′(S)),

where Z ′(S) ∈ [0, 1] is a random variable (which only depends on S) which differs from M(S) by
at most ζ1, except with probability ζ2, for any value taken by S.

Example 3. For all implementations AS of S, the all-one measure (i.e., PM = PS) admits an error-less
sampler O which returns the initial (void) state for AS and z = 1. We will see further examples of state
samplers in the proof of Theorem 1 below.

Note that O is not required to be efficiently implementable. State samplers allow for efficient simulation

of S(S′) for S′ $←M: Given the output (Σ,Z) sampled from a (ζ1, ζ2)-sampler O, we flip a coin B with
PB(1) = Z: Consider the distribution PΣ|B=1 of Σ conditioned on the outcome B = 1. If ζ1 = ζ2 = 0,

it is not hard to verify that AS[Σ′] ≡ S(S′) for Σ′ $← PΣ|B=1 and S′ $← M. This is because, by
definition, we have (AS[Σ], Z,B) ≡ (S(S),M(S), B′), where B′ is a bit which is 1 with probability

M(S), and thus in particular AS[Σ′] ≡ S(S′) where S′ $← PS|B′=1. However, since PB′|S(1, s) :=M(s)
and PB′(1) :=

∑
s∈S PS(s) · M(s) = µ(M),

PS|B′(s, 1) =M(s) · PS(s) · µ(M)−1 = PM(s).

Of course, one can similarly simulate for S′′ $← PM, as we obtain a corresponding sampler by just
replacing z by 1− z in the output (σ, z). This approach can be extended to non-zero errors ζ1 and ζ2.

3.2 The Hardcore Lemma for System-Bit Pairs

In the following, for understood parameters γ, ε, ζ1, and ζ2, we define

ϕhc :=
6400

γ2(1− ε)4 · ln
(

160

γ(1− ε)3
)

and ψhc :=
200

γ2(1− ε)4ζ21
· ln
(

2

ζ2

)
.

We now state the HCL for cc-stateless system-bit pairs. Even though we apply the result only in a more
restricted setting, we prove a more general statement for arbitrary cc-stateless system-bit pairs.

Theorem 1 (HCL for System-Bit Pairs). Let (S, B) ≡ (S(S), B(S)) be a cc-stateless system-bit
pair admitting an implementation A(S,B) with space complexity sA(S,B)

. Furthermore, for some integers
t, q > 0 and some ε ∈ [0, 1),

Guesst,q(B |S) ≤ ε.
Then, for all 0 < ζ1, ζ2 < 1 and all 0 < γ ≤ 1

2 , there exists a measure M for (S, B) with µ(M) ≥ 1− ε
such that the following two properties are satisfied:

(i) For S′ $←M, t′ := t/ϕhc, and q′ := q/ϕhc,

Guesst′,q′(B(S′) |S(S′)) ≤ γ.
(ii) There exists a (ζ1, ζ2)-sampler forM and A(S,B) with length sA(S,B)

(ψhc·q′). Moreover, if (S(s), B(s))
is deterministic for all s, then there also exists a (0, 0)-sampler for M and A(S,B) with length
sA(S,B)

((7 · γ−2 · (1− ε)−3 + 1) · q′).
In the remainder of this section, we outline the proof intuition, while the full proof is postponed to

Appendix C.1. We refer the interested reader to Appendix B for an example application in the most
general setting where only a sampler with non-zero error is given by the theorem.

6 That is, we consider the parallel composition of a system (either AS[Σ] or S(S)) and a correlated [0, 1]-valued random
variable.
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Proof Outline.The proof is by contradiction: We assume that for all measuresM with µ(M) ≥ 1−ε
admitting a (ζ1, ζ2)-sampler as in (ii), there exists an adversary A with time complexity t′ and query

complexity q′ such that GuessA(B(S′) |S(S′)) > γ for S′ $← M. The core of the proof consists of
proving that, under this assumption, there exists a sufficiently small family of adversaries A (more
specifically, |A| = 7 · γ−2 · (1 − ε)−3 + 1) such that either (A) α(S) > γ holds with probability higher

than 1 − 1−ε
4 over the choice of S, where α(s) := E

[
GuessA

′
(B(s) |S(s))

]
for all s, where A′ $← A, or

(B) E [α(S′)] > Θ
(
(1− ε)2γ

)
for all measures M with density 1− ε and S′ $←M.

In Case (A), a simple majority-voting based strategy yields a good adversary breaking the assumed
hardness of (S, B), whereas in Case (B) such an adversary can be built from A using techniques similar
to the case of random variables [24, 21]. Both adversaries heavily rely on the cc-stateless property of
(S, B).

The existence of an appropriate family A is shown by means of an iterative process, similar to the
ones used by Impagliazzo [24] and by Holenstein [21]: We associate with each family A and τ ∈ N a
measure MA,τ such that elements for which A is worst, i.e., NA(s) ≤ τ , are given high weight (i.e.
MA,τ (s) = 1), whereas elements for which A performs well, i.e., NA(s) ≥ τ + 1

γ(1−ε) , are not chosen

(MA,τ (s) = 0). An intermediate measure value is assigned to states not falling into one of these two
categories. In particular, M∅,0 is the all-one measure (i.e., PM equals the state distribution PS), which
has density 1 ≥ 1− ε. A crucial property, which we show, is that MA,τ always admits an (ζ1, ζ2)-state
sampler for all A and τ . We then consider the following iterative process: It starts with A := ∅ and then,
at each round, it possibly increases τ to ensure that µ(MA,τ ) ≥ 1− ε and then uses the assumption of
the HCL being wrong to find an adversary achieving advantage larger than γ forMA,τ , and adds it A.
We prove that within 7 · γ−2 · (1− ε)−3 + 1 iterations A satisfies (A) or (B).

Remark 1. A natural question is whether the HCL can be extended to arbitrary system-bit pairs, where
the measure is defined on the randomness of the implementation of the system-bit pair, regardless of
the system having a cc-stateless representation. Yet, techniques similar to the ones used in counter-
examples to soundness amplification for interactive arguments via parallel repetition [1, 42] yield (non
cc-stateless) efficiently implementable system-bit pairs for which, given multiple independent instances
of the system-bit pair, the probability of guessing all of the bits given access to all of the associated
systems in parallel does not decrease with the number of instances. If such a a general HCL were true,
then it is not hard to prove that the guessing probability would decrease exponentially in the number
of instances. We postpone a discussion to a later version of this paper.

3.3 The Hardcore Lemma for Computational Indistinguishability

This section presents the hardcore lemma for computational indistinguishability of interactive systems.
In particular, this result generalizes the statement for random variables previously shown in [34].

Theorem 2 (HCL for Computational Indistinguishability). Let S ≡ S(S) and T ≡ T(T ) be cc-
stateless systems, with respective implementations AS (with space complexity sAS

) and AT (with space
complexity sAT

). Furthermore, for some integers t, q > 0 and some ε ∈ [0, 1),

∆t,q(S,T) ≤ ε.

Then, for all 0 < ζ1, ζ2 < 1 and all 0 < γ ≤ 1
2 , there exist measures MS and MT such that µ(MS) ≥

1− ε and µ(MT) ≥ 1− ε and the following properties hold:

(i) For S′ $←MS, T ′ $←MT, t′ := t/ϕhc, and q′ := q/ϕhc, we have

∆t′,q′(S(S′),T(T ′)) ≤ 2γ;
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(ii) There exist a (ζ1, ζ2)-sampler OS for MS and AS with length sAS
(ψhc · q′) and a (ζ1, ζ2)-sampler

OT for MT and AT with length sAT
(ψhc ·q′). Furthermore, if both S and T are random functions,

then both samplers can be made error-less with lengths sAS
(ψ · q′) and sAT

(ψ · q′), where ψ :=
7 · γ−2 · (1− ε)−3 + 1.

We postpone the full proof to Appendix D, which relies on Theorem 1, and only present the main ideas
in the following. Furthermore, we state a uniform version of the theorem in Appendix F.

Proof Sketch.We define (F, B) ≡ (F(X,B), B) to be the cc-stateless system-bit pair with a uniform
random bit B and where F behaves as S if B = 0 and as T if B = 1. In particular, the initial state

(X,B) of (F, B) is sampled by first letting B
$← {0, 1}, and then choosing X

$← PS if B = 0 and

X
$← PT otherwise, and

(F(x, b), B(x, b)) =

{
(S(x), 0) if b = 0,
(T(x), 1) if b = 1.

By a standard argument∆t,q(S,T) = Guesst,q(B |F) ≤ ε holds (also cf. Example 2), and Theorem 1 thus
implies that there exists a measureM for (F, B) such that µ(M) ≥ 1−ε, and Guesst′,q′(B

′ |F(X ′)) ≤ γ,

where (X ′, B′) $←M, t′ = t/ϕhc, and q′ = q/ϕhc. DefineMS(s) :=M(s, 0) andMT(t) :=M(t, 1), and
note that

PX′B′(s, 0) =
1

2µ(M)
· PS(s) · MS(s) and PX′B′(t, 1) =

1

2µ(M)
· PT (t) · MT(t). (1)

If B′ were uniformly distributed (i.e.,
∑

s PX′B′(s, 0) =
∑

t PX′B′(t, 1) = 1
2), we then would have

µ(MS) = µ(MT) = µ(M) ≥ 1 − ε by (1), and (X ′, B′) could be sampled by choosing B′ uniformly,

and letting X ′ = S′ $←MS if B′ = 0, and X ′ = T ′ $←MT if B′ = 1. This would also yield

∆t′,q′(S(S′),T(T ′)) = Guesst′,q′(B
′ |F(X ′)) ≤ γ,

concluding the proof. The main challenge in the full proof (cf. Appendix D) is dealing with the fact
that B′ is generally only Θ(γ)-close to uniform.

Remark 2. Theorem 2 can be seen as a computational analogue of Lemma 5 in [30], which shows a similar
property for information-theoretic indistinguishability (i.e., with respect to computationally unbounded
distinguishers). Theorem 2 can of course also be used in the IT setting, and it is somewhat stronger in
that it yields events defined on the initial state of the system, instead of interaction-dependent sequences
of events as in [30]. However, Lemma 5 in [30] holds for arbitrary systems and presents a tight reduction
with q′ = q and no additive term γ, which we do not know how to achieve in the computational setting.

Connection to Computational Entropy.Let Q be a cc-stateless random permutation on X (with
N := |X |) with function table Q and such that ∆t,q(Q,P) ≤ ε for a URP P. Theorem 2 yields
events A on Q and B on a uniform permutation table P such that P [A] ≥ 1 − ε, P [B] ≥ 1 − ε, and

∆t′,q′(Q
′,P′) ≤ γ, where Q′ and P′ are cc-stateless random functions with function tables Q′ $← PQ|A

and P ′ $← PP |B, respectively. In particular, PP ′(π) =
PP (π)·PB|P (π)

P[B] ≤ 1
(1−ε)·(N !) for all permutations π,

and the min-entropy H∞(P ′) := − log maxπ PP ′(π) is at least log(N !)− log
(
(1− ε)−1

)
. Informally, this

can be interpreted as the fact that Q has “computational” min-entropy at most log
(
(1− ε)−1

)
away

from the maximal achievable entropy log(N !) with probability 1−ε.7 Clearly, the statement also extends
to the two-sided case as well as to other types of systems.

7 We stress, however, that the distribution P ′ depends on t, q, as well as on γ.

9



Remark 3. Another useful fact is that P ′ has statistical distance ε from P . This can be shown using the
fact that the distribution of P ′ is a convex combination of flat distributions over subsets of size at least
(1− ε) · (N !): As each such distribution is ε-away from uniform, the bound follows from the convexity
of the statistical distance. Therefore ∆t,q(P

′,P) ≤ ∆t,q(〈P′〉 , 〈P〉) ≤ d(P ′, P ) ≤ ε for any t, q.

4 Cascade of Weak Permutations

4.1 Cascade of Permutations with Large Entropy

Let Q1 and Q2 be two independent cc-stateless random permutations on the set X (with N := |X |) with
the property that the min-entropies of their respective function tables Q1 and Q2 satisfy H∞(Q1) ≥
log(N !)−log

(
(1− ε)−1

)
and H∞(Q2) ≥ log(N !)−log

(
(1− ε)−1

)
for some ε ∈

[
0, 1− 1

N

)
. We prove that

the cascade Q1 BQ2 is indistinguishable from a URP P for computationally unbounded distinguishers,
both in the one- and in the two-sided cases.

Theorem 3 (Cascade of Large-Min-Entropy Permutations). For all q, Λ ≥ 1,

∆q(Q1 B Q2,P) ≤ ∆q(〈Q1 B Q2〉 , 〈P〉) ≤ 4qΛ
N + 2Λ(q+Λ)

(1−ε)N + 2

(
q log((1−ε)−1)

Λ

) 1
2

.

The same bound applies to any cascade Q′1B· · ·BQ′m ofm independent cc-stateless random permutations
such that Q′i ≡ Q1 and Q′j ≡ Q2 for some i < j, as such a cascade can be seen as the cascade

of two permutations Q1 := Q′1 B · · · B Q′i and Q2 := Q′i+1 B · · · B Q′m with the same min-entropy
guarantees on their function tables. The theorem allows free choice of Λ: For our purposes, it suffices
to set Λ := (logN)ζ (for a slowly growing ζ = ω(1) in the security parameter logN) to achieve

indistinguishability for q = poly(logN) queries and any ε ≤ 1− (logN)3ζ

N .
The core of the proof (given in Appendix E) is a lemma stating that 〈Qi〉 (for i = 1, 2) is indis-

tinguishable from a random permutation
〈

(Qi)Di

〉
which is initialized by letting a carefully-chosen

distinguisher Di (making Λ queries) interact with 〈Qi〉, and then answering queries according to a
randomly chosen permutation consistent with Di’s interaction. (This extends a previous result by Un-
ruh [43] to random permutations.) We employ tools from the random systems framework [27] (including
a new lemma) to prove that the cascade of two independent such permutations is indistinguishable from
a URP.

4.2 Security Amplification of Weak PRPs

Let Q be a cc-stateless random permutation with domain X (for N := |X | = 2n, where n is the security
parameter) such that 〈Q〉 is implemented by the algorithm A〈Q〉 with time complexity tA〈Q〉 and space
complexity sA〈Q〉 . We also consider the canonical (efficient) implementation of a two-sided URP 〈P〉 that
maintains a table consisting of all input-output pairs (xi, yi) of previous queries as its state, and, upon a
new query (x,+) or (y,−), it chooses uniformly at random a y′ (or x′) not appearing as the second (first)
element in a previous input-output pair, and adds (x, y′) (or (x′, y)) to the table. (If a corresponding
pair is in the table, it answers accordingly.) Thus each query is answered in time O(log(s)), where s is
the size of the table, and s = O(q · n) after q queries.

The following is the main security amplification result of this paper.

Theorem 4. Let Q1, . . . ,Qm be independent instances of Q and let P be a URP, and assume that for
some t, q we have ∆t,q(〈Q〉 , 〈P〉) ≤ ε. For all γ > 1 and Λ > 0,

∆t′′,q′′(〈Q1 B · · ·B Qm〉 , 〈P〉) ≤ (m− (m−1)ε) ·εm+ 4q′′Λ
N + 2Λ(q′′+Λ)

(1−ε)N +2

(
q′′ log((1−ε)−1)

Λ

) 1
2

+(2m+2)γ
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where t′′ = t/ϕhc − (m − 1) max
{
tA〈Q〉(q

′′, sA〈Q〉(q
′′ · ψ)),O (q′′ log(q′′ · (ψ + 1)n))

}
and q′′ = q/ϕhc for

ψ := 7 · γ−2 · (1− ε)−3 + 1 and ϕhc as in Theorem 2.

Essentially the same result can be proven for the single-sided case. The proof of Theorem 4 follows the
intuition that, with very high probability, at least two permutations in the cascade are computational
indistinguishable from random permutations with high-entropy, allowing application of Theorem 3.
Extra work is required to prove a non-trivial bound for the case where at most one permutation is
guaranteed to have high-entropy. We postpone a proof of the tightness of these bounds to Section 4.3.

Proof. Theorem 2 implies that we can define (two-sided) random permutations 〈Q′〉 , 〈Q′′〉, and 〈P′〉
such that the following three properties hold for some p ≤ ε: (i) The function table of 〈P′〉 has min-
entropy at least log(N !)− log

(
(1− ε)−1

)
, (ii) 〈Q〉 behaves as 〈Q′〉 with probability 1− p and as 〈Q′′〉

with probability p, and (iii) ∆t′,q′′(〈Q′〉 , 〈P′〉) ≤ 2γ for t′ := t/ϕhc. Furthermore, 〈Q′〉 and 〈Q′′〉 can
both be perfectly implemented using A〈Q〉 initialized with some appropriately distributed state of length
at most sA〈Q〉(q

′′ · ψ) given as advice. Similarly, 〈P′〉 can be simulated by running the above canonical
algorithm initialized with an appropriate state of length O(q′′ ·ψ ·n). (See the discussion in Section 3.1.)

Additionally, for I ⊆ {1, . . . ,m}, let AI be the event that 〈Qi〉 behaves as 〈Q′〉 for all i ∈ I whereas
〈Qi〉 behaves as 〈Q′′〉 for all i /∈ I. Likewise, for independent instances 〈Q′i〉 and 〈Q′′i 〉 (for i = 1, . . . ,m)
of 〈Q′〉 and 〈Q′′〉, respectively, let QI := S1 B · · ·B Sm, where Si := Q′i for all i ∈ I and Si := Q′′i for
all i /∈ I

We now fix some distinguisher D with time complexity t′′ and making q′′ queries, and we first observe
that

δD(〈Q1 B · · ·B Qm〉 , 〈P〉) =
∑

I⊆{1,...,m}
qI · δD(〈QI〉 , 〈P〉), (2)

where δD(F,G) := P [D(F) = 1]− P [D(G) = 1] and qI := P [AI ] = (1− p)|I| · pm−|I|.
We first upper bound the summands corresponding to sets I with at most one element. To this end,

for all i = 1, . . . ,m, we define the distinguisher Di which, given access to a two-sided random permu-
tation 〈S〉, outputs D(

〈
Q′′1 B · · ·B Q′′i−1 B S B Q′′i+1 B · · ·B Q′′m

〉
): Note that Di can be implemented

with time complexity t′′ + (m− 1)tA〈Q〉(q
′, sA〈Q〉(ψ · q′)) ≤ t′ given the appropriate advice.

We have δ′i := δDi(〈Q′〉 , 〈P〉) = δDi(〈Q′〉 , 〈P′〉) + δDi(〈P′〉 , 〈P〉) ≤ 2γ + ε, where the bound on
the first term follows from the hardcore lemma (for every fixed value of the advice), whereas the
bound on the second term follows from the fact that δDi(〈P′〉 , 〈P〉) ≤ ε (cf. Remark 3). Additionally,
δDi(〈Q〉 , 〈P〉) = (1−p) ·δ′i+p ·δ′′i ≤ ε with δ′′i := δDi(〈Q′′〉 , 〈P〉) by the indistinguishability assumption
on 〈Q〉 and the fact that t′ < t. Using the fact that

〈
Q′′1 B · · ·B Q′′i−1 B P B Q′′i+1 B · · ·B Q′′m

〉
≡ 〈P〉,

we obtain δD(〈Q∅〉 , 〈P〉) = δ′′i and δD(
〈
Q{i}

〉
, 〈P〉) = δ′i for all i ∈ {1, . . . ,m}, and thus

∑
|I|≤1

qI · δD(〈QI〉), 〈P〉) =

m∑
i=1

1

m
· pm · δ′′i + pm−1(1− p) · δ′i

≤ max
i∈{1,...,m}

{
pm · δ′′i +m · pm−1 · (1− p) · δ′i

}
.

However, for all i ∈ {1, . . . ,m}, we combine all of the above observations to obtain

pmδ′′i +mpm−1(1− p)δ′i = pm−1(pδ′′i + (1− p)δ′i) + (m− 1)pm−1(1− p)δ′i
≤ pm−1ε+ (m− 1)pm−1(1− p)ε+ 2γ

≤ εm + (m− 1)εm(1− ε) + 2γ = εm(m− (m− 1)ε) + 2γ,

where we also have used p ≤ ε and the fact that pm + (m − 1)pm−1(1 − p) grows monotonically for
p ∈ [0, 1].
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To bound the remaining summands of Equation (2), we use a standard hybrid argument. Let
〈P′1〉 , . . . , 〈P′m〉 be independent instances of 〈P′〉. For given I (with |I| ≥ 2) and i ∈ {0, . . . ,m},
we define QI,i as the cascade S1 B · · · B Sm where Sj = Q′′j if j /∈ I, Sj = P′j if j ∈ I and j ≤ i and
Sj := Q′j if j ∈ I and j > i. Then,

δD(〈QI〉 , 〈P〉) =

m∑
i=1

δD(〈QI,i−1〉 , 〈QI,i〉) + δD(〈QI,m〉 , 〈P〉).

Let D′i be the distinguisher which outputs D(〈S1 B · · ·B Si−1 B S B Si+1 B · · ·B Sm〉) given access
a system S ∈ {〈Q′〉 , 〈P′〉}, with Sj defined as above, but simulated using the corresponding im-
plementations of 〈Q〉 and 〈P〉, as well as appropriate advice: In particular, its time complexity is
t′′+(i−1)·O (q′′ log(q′′ · (ψ + 1)n))+(m−i+1)·tA〈A〉(q′, sA〈Q〉(ψ·q′)) ≤ t′ and thus δD(〈QI,i−1〉 , 〈QI,i〉) =

δDi(〈Q′〉 , 〈P′〉) ≤ 2γ by Theorem 2 and the fact that this holds for all values of the advice. Finally, as

|I| ≥ 2 and for all j ∈ I the function table of
〈
P′j
〉

in the cascade 〈QI,m〉 has min-entropy at least

log(N !) − log
(
(1− ε)−1

)
, we can bound δD(〈QI,m〉 , 〈P〉) using Theorem 3. We conclude the proof by

noticing that δt′,q′(〈Q1 B · · ·B Qm〉 , 〈P〉) = ∆t′,q′(〈Q1 B · · ·B Qm〉 , 〈P〉). ut

This in particular yields the following corollary, by applying the above argument to all γ = 1/p
(for some polynomial p in n) and to all polynomially bounded t, q, and by choosing an appropriate
Λ := nω(1):

Corollary 1. If E = {Ek}k∈K is a (two-sided) ε-PRP for ε ≤ 1− 1
nO(1) (for security parameter n), then

for any m = poly(n) the cascade {Ek1 ◦ · · · ◦Ekm}k1,...,km∈K is a (two-sided) (εm(m− (m−1)ε)+ν)-PRP
for some negligible function ν, where ◦ denotes permutation composition.

4.3 Tightness

Let ε < 1− 2−n be such that log
(
(1− ε)−1

)
∈ {1, . . . , n}. Let Q : {0, 1}n → {0, 1}n be the cc-stateless

random permutation which initially chooses B ∈ {0, 1} with PB(0) = ε. If B = 0, then Q behaves as
the identity permutation id, whereas if B = 1 it behaves as a uniformly chosen permutation Q′ with the
constraint that the first log

(
(1− ε)−1

)
bits of Q′(0n) are all equal to 0. Clearly, it is possible to give an

efficient stateful algorithm implementing Q (or 〈Q〉) by using lazy sampling.8

In the following, let P : {0, 1}n → {0, 1}n be a URP, and let Q1, . . . ,Qm be independent instances
of Q. We prove the following two statements:

(i) For all distinguishers D we have ∆D(〈Q〉 , 〈P〉) ≤ ε, regardless of their computing power.

(ii) There exists a constant-time distinguisher D∗ making one single forward query such that

∆D∗(Q1 B · · ·B Qm,P) = ∆D∗(〈Q1 B · · ·B Qm〉 , 〈P〉) ≥ (m− (m− 1)ε)εm − 1

2n
.

These two facts imply that the bound of Theorem 4 cannot be substantially improved, even if allowing
a huge security loss (i.e., t′′ << t and q′′ << q). This in particular extends to arbitrary m a previous
tightness result given by Myers [35] for the special case m = 2.

8 Also, from any PRP E = {Ek}k∈{0,1}n with n-bit string domain, a permutation family E′ = {E′k′}k′∈{0,1}log(1/ε)+n which
is computationally indistinguishable from Q under a uniform (log(1/ε) + n)-bit random key can be defined as follows:
For all k′ ∈ {0, 1}log(1/ε) and k ∈ {0, 1}n, let E′k′‖k(x) := x if k′ = 0log(1/ε), and E′k′‖k := Ek(x) ⊕ Ek(0n)|log((1−ε)−1)
otherwise, where x|r i sets the last n − r bits of x to be 0 (and leaves the first r unchanged) and ‖ denotes string
concatenation.
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Q is a two-sided ε-PRP. In the following, let Q and P be random variables representing the distri-
butions of the permutation tables of Q and P, respectively. There are (1 − ε)(2n!) permutations π for
which the last log

(
(1− ε)−1

)
bits of π(0n) all equal to 0, and the identity id is one such permutation.

Hence,

PQ(id) = ε+ (1− ε) · 1

(1− ε)(2n!)
= ε+

1

2n!
≥ 1

2n!
= PP (id).

For all π 6= id, we have PQ(π) ≤ (1−ε) · 1
(1−ε)(2n!) = 1

2n! = PP (π). This yields ∆D(〈P〉 , 〈Q〉) ≤ d(P,Q) =

PQ(id)− PP (id) = ε for all distinguishers D.

Lower Bound for Distinguishing the Cascade.We define D∗ as the distinguisher querying 0n and
outputting 1 if and only if the first log

(
(1− ε)−1

)
bits of the resulting output are all 0, and outputting

0 otherwise. It is easy to verify that P[D∗(P) = 1] = 2− log((1−ε)−1) = 1− ε, as the output of P on input
0n is a uniformly distributed n-bit string.

Denote as Bi the bit B associated with the i-th instance Qi, and let AI for I ⊆ {1, . . . ,m} be the
event that Bi = 1 for all i ∈ I and Bi = 0 for all i /∈ I. Furthermore, let E be the event that AI occurs for
some I with |I| ≤ 1. Clearly, P [E ] = εm +m(1− ε)εm−1 and P

[
D∗(Q1 B · · ·B Qm) = 1

∣∣ E] = 1, since
Q1B · · ·BQm under E behaves either as the identity or as Q′, and in both cases the first log

(
(1− ε)−1

)
output bits are all 0.

Assume that AI occurs for I with k := |I| ≥ 2, and let Q′1, . . . ,Q
′
k be independent random permu-

tations answering according to Q′. Then P
[
D∗(Q1 B · · ·B Qm) = 1

∣∣AI] = P [D∗(Q′1 B · · ·B Q′k) = 1].
Note that for any input x 6= 0n the probability that the first log

(
(1− ε)−1

)
output bits of Q′k(x) are

all 0 is exactly 1− ε, whereas the probability that Q′k is invoked on 0n is at most 1
(1−ε)2n (as regardless

of the input, the output Q′k−1 is uniformly distributed on a set of at least size (1− ε)2n), and therefore

P
[
D∗(Q′1 B · · ·B Q′k) = 1

]
≥
(

1− 1

(1− ε)2n
)
· (1− ε) = 1− ε− 1

2n
,

and therefore we also have P
[
D∗(Q1 B · · ·B Qm) = 1

∣∣ E] ≥ 1− ε− 1
2n , from which we conclude

∆D∗(Q1 B · · ·B Qm,P) ≥ P [D∗(Q1 B · · ·B Qm) = 1]− P [D∗(P) = 1]

= P [E ] · P
[
D∗(Q1 B · · ·B Qm) = 1

∣∣ E]+ (1− P [E ]) · P
[
D∗(Q1 B · · ·B Qm) = 1

∣∣ E]− (1− ε)

= P [E ] · 1 + (1− P [E ])

(
1− ε− 1

2n

)
− (1− ε) ≥ P [E ] · ε− 1

2n

≥ εm+1 +m(1− ε)εm − 1

2m
= (m− (m− 1)ε)εm − 1

2n
.

5 Conclusions and Open Problems

This paper has presented the first tight analysis of the security amplification properties of the cascade of
weak PRPs, both in the one- and two-sided cases. Our main tool is a hardcore lemma (Theorem 2) for
computational indistinguishability of discrete interactive cc-stateless systems. It is our belief that the
generality of this result makes it suitable to the solution of a number of other problems. For instance, an
interesting problem is whether parallel and deterministic security-amplifying constructions for arbitrarily
weak pseudorandom functions exist. To date, the best known constructions are either randomized [36,
33], or only work for moderately weak PRFs [7, 33]. Also, quantitative improvements of our results
should also be of interest. One may try to minimize the length of the state output by the state sampler
or to improve the bound of Theorem 3.

We stress that we have followed one possible path to generalize the hardcore lemma to the setting
of interactive systems, tailored at applications in the context of secret-key primitives. It is a meaningful
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question to investigate whether alternative approaches are possible which would be applicable to other
areas, such as security amplification of two-party protocols, where in particular no repetition is allowed
within the reduction.
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A Tail Estimates

The following well-known result from probability theory [20] is repeatedly used throughout this paper.
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Lemma 1 (Hoeffding’s Inequalities). Let X1, . . . , Xϕ be independent random variables with range
[0, 1], and let X := 1

ϕ

∑ϕ
i=1Xi. Then, for all ε > 0 we have

P[X ≥ E[X] + ε] ≤ e−ϕε2 and P[X ≤ E[X]− ε] ≤ e−ϕε2 .

In particular,

P
[∣∣X − E[X]

∣∣ ≥ ε] ≤ 2 · e−ϕε2 .

B An Example: The XOR Lemma for System-Bit Pairs

In this section we provide a self-contained proof of a generalization of Yao’s XOR Lemma [46, 15] to
system-bit pairs: Namely, given m multiple instances (S1, B1), . . . , (Sm, Bm) of a cc-stateless system-bit
pair (S, B) ≡ (S(S), S(S)) with the property that Guesst,q(B |S) ≤ ε, we prove that given access to all
of S1, . . . ,Sm in parallel9 (we denote the parallel composition as S1‖ . . . ‖Sm) the XOR B1 ⊕ · · · ⊕ Bm
can only be guessed with advantage Guesst′,q′,...,q′(B1 ⊕ · · · ⊕ Bm |S1‖ . . . ‖Sm) at most εm + γ by an
adversary with related time complexity t′ and making at most q′ queries to each system Si. The obtained
parameters are slightly worse than those of the direct proof of [33] (which in turn was based on Levin’s
approach [15]), but the given reduction is simpler (given Theorem 1) and nicely illustrates the use of
state samplers with non-zero errors ζ1 and ζ2.

Theorem 5 (XOR Lemma). If, for some integers t, q > 0, and ε ∈ [0, 1),

Guesst,q(B |S) ≤ ε,

then, for all 0 < ζ1, ζ2 < 1 and 0 < γ ≤ 1
2 , we have

Guesst′,q′,...,q′(B1 ⊕ · · · ⊕Bm |S1‖ . . . ‖Sm) ≤ εm + 2m · (ζ1 + ζ2) + γ,

where t = ϕhc ·
[
t′ + (m− 1) · tA(S,B)

(q, sA(S,B)
(ψhc · q′))

]
and q = ϕhc · q′.

Proof. Let A be an adversary with time complexity t issuing q queries to each subsystem S1, . . . ,Sm and
outputting a guess B′ for B1⊕· · ·⊕Bm. Further, using the HCL (Theorem 1), letM with µ(M) ≥ 1−ε
be such that

Guesst′/ϕhc,q(B(S′) |S(S′)) ≤ γ (3)

for S′ $←M, and let O be the corresponding (ζ1, ζ2)-sampler forM and A(S,B) with length sA(S,B)
(ψhc·q).

We consider an adversary A′ which, given access to S(S′), first samplesm pairs (Σ1, Z1), . . . , (Σm, Zm)
using O, and subsequently flips independent bits U1, . . . , Um ∈ {0, 1}, where PUj (1) := Zj for j =
1, . . . ,m. Then, it picks an i ∈ {1, . . . ,m} (provided it exists) such that Ui = 1, and simulates the
interaction of A with

AS[Σ1] ‖ . . . ‖AS[Σi−1] ‖S(S′) ‖AS[Σi+1] ‖ · · · ‖AS[Σm],

where AS[Σj ] is the instance of S simulated by A(S,B)[Σj ] (with B′j being the associated bit), for
j = 1, . . . ,m, j 6= i. When A outputs a bit B′, A′ outputs B′ ⊕⊕j 6=iB

′
j . If no such i exists, A′

terminates directly by returning a random bit. Clearly, A′ can equivalently be seen as sampling m
independent pairs (S1, Z(S1)), . . . , (Sm, Z(Sm)), letting Uj be one with probability Z(Sj), and replacing

9 In particular, the adversary can query at any point in time any system Si, adaptively depending on the outcomes of
previous queries to this and other systems Sj for j 6= i.
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AS[Σj ] and B′j with S(Sj) and B(Sj)) for all j = 1, . . . ,m, j 6= i. This does not alter the guessing
advantage.

We also consider the adversary Ã′ where Z(Sj) is replaced by M(Sj) for all j = 1, . . . ,m, and

denote as Ũ1, . . . , Ũm the corresponding independent bits. (Remark that P
Ũj

(1) = µ(M) ≥ 1 − ε.)

Analogously, in the experiment where A interacts with S1‖ . . . ‖Sm, define the bits Ũj accordingly. In

both experiments, let E be the event that Ũ1 = · · · Ũm = 0. Note that P [E ] ≤ εm. Furthermore,

P
[
Ã′(S(S′)) = B(S′)

∣∣ E] = P
[
A(S1‖ . . . ‖Sm) = B1 ⊕ · · · ⊕Bm

∣∣ E] ,
from which, using the facts that P

[
A(S1‖ . . . ‖Sm) = B1 ⊕ · · · ⊕Bm

∣∣ E] ≤ 1 and that P
[
Ã′(S(S′)) = B(S′)

∣∣ E] =
1
2 , we can upper bound

P [A(S1‖ . . . ‖Sm) = B1 ⊕ · · · ⊕Bm] ≤
≤ P [E ] + (1− P [E ]) · P

[
Ã′(S(S′)) = B(S′)

∣∣ E]
≤ P [E ]

2
+ P [E ] · 1

2
+ (1− P [E ]) · P

[
Ã′(S(S′)) = B(S′)

∣∣ E]
≤ εm

2
+ P

[
Ã′(S(S′)) = B(S′)

]
,

or, in other words

GuessA(B1 ⊕ · · · ⊕Bm |S1‖ . . . ‖Sm) ≤ εm + GuessÃ
′
(B(S′) |S(S′)). (4)

Furthermore, note that for all j = 1, . . . ,m and b ∈ {0, 1}

d(Ũj , Uj) =
∣∣∣PŨj (b)− PUj (b)

∣∣∣ ≤ ζ1 + P
[
E ′
]
≤ ζ1 + ζ2,

where E ′ is the event that an error larger than ζ1 occurs in the estimate. Then, it is not hard to verify
that

GuessÃ
′
(B(S′) |S(S′)) ≤ GuessA

′
(B(S′) |S(S′))+

+ 2 · d((U1, . . . , Um), (Ũ1, . . . , Ũm))

≤ GuessA
′
(B(S′) |S(S′)) + 2m(ζ1 + ζ2).

To conclude the proof, we notice that an adversary at least as good as A′ can be implemented in time
t′ + (m − 1) · tA(S,B)

(q, sA(S,B)
(q · ψhc)) ≤ t/ϕhc (by fixing optimally chosen states σ1, . . . , σm), and by

Equation 3 this adversary achieves advantage at most γ. ut

C Full Proof of the Hardcore Lemma

C.1 High-Level Description of the Proof of Theorem 1

In this section, we present a full proof of the hardcore lemma for system-bit pairs (Theorem 1). At a high
level, our proof follows Holenstein’s proof of the tight uniform10 hardcore lemma given in [21] (which, in
turn, was inspired by one of the proofs given by Impagliazzo [24]). However, there are major differences
(and difficulties) due to the fact that we are considering discrete interactive systems: In particular, for

10 Interestingly, no simpler approach appears to work despite the statement being proven being non-uniform.
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NA(s)

0 τ + 1
γ(1−ε)τ
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MA,τ(s)

N
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Fig. 1. MeasureMA,τ (s) as a function of NA(s). In particular, the gray area represents WA,τ (s) given that NA,τ (s) = N .

a given s ∈ S the behavior of the system S(s) can be randomized (but stateless). Furthermore, we need
to take into account the fact that we prove the existence of a measure for which a sufficiently good
state sampler exists. Also, unlike the case of random variables, it is crucial that no quantity in the proof
depends on the size of states S, as we cannot generally assume them to be small. Another final difference
(which turns out to be rather easy to handle at the technical level) is that, contrary to the traditional
hardcore lemma, we allow for the distribution PS of the state S to be not uniformly distributed.

Initial definitions. For a collection A of (deterministic) adversaries, we define

NA(s) :=
∑
A∈A

GuessA(B(s) |S(s)),

for all s ∈ S. Note that |NA(s)| ≤ |A|. In particular, NA(s) provides a quantitative measure of the
overall quality of the collection A in guessing B(s) given access to S(s). For instance, NA(s)/ |A| gives
the advantage of a randomly chosen A ∈ A in guessing B(s) while interacting with S(s). Moreover, for
a non-negative integer τ ∈ N, we define the measure MA,τ : S → [0, 1] associated with A and τ such
that

MA,τ (s) :=


1 if NA(s) ≤ τ ,
1− (NA(s)− τ)γ(1− ε) if τ < NA(s) < τ + 1

γ(1−ε) ,
0 if NA(s) ≥ τ + 1

γ(1−ε) .

The value MA,τ (s) is plotted as a function of NA(s) on Figure 1. In other words, elements s ∈ S
on which many adversaries in A are bad are given more weight by the measure, whereas those for
which many adversaries are good are given no measure. Note that M∅,0 is the all-one measure, i.e., in
particular the associated distribution PM equals PS . Hence, µ(M∅,0) ≥ 1− ε.
Structure of the proof. The proof is by contradiction. It starts by assuming that Theorem 1 is
false. In other words, we assume that for some γ, ζ1 and ζ2 the following holds:

Assumption ¬HC. For all measures M : S → [0, 1] with µ(M) ≥ 1 − ε such that a (ζ1, ζ2)-
sampler for M and A(S,B) with length11 ` := sA(S,B)

(ψhc · q′) exists, there exists an adversary A
with time complexity t′ := t/ϕhc, making q′ := q/ϕhc queries, and such that

GuessA(B(S′) |S(S′)) > γ.

where S′ $←M.

The core of proof consists of the procedure FindCollection, specified in Figure 2, which, under Assump-
tion ¬HC, outputs a collection of deterministic adversaries A such that |A| ≤ 7 · γ−2 · (1− ε)−3 + 1 and
such that (at least) one of the following two properties is satisfied:

11 In the case where (S(s), B(s)) is deterministic for all s ∈ S, we replace ψhc by 7 · γ−2 · (1− ε)−3 + 1 and let ζ1 = ζ2 = 0.
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Procedure GoodEnough(A): // collection of adversaries A
1: if A = ∅ then return false

2: p := min
E:P[E]=1−ε

P
[
A(S(S)) = B(S)

∣∣A $← A, E
]

3: ρ := P[NA(S) > γ · |A|]
4: if p ≥ 1

2 + 1
4·(1−ε)·|A|γ ∨ ρ ≥ 1− 1−ε

4 then
5: return true

6: else
7: return false

Procedure FindCollection: // no input

1: A := ∅, τ := 0
2: while not GoodEnough(A) do
3: if µ(MA,τ ) < 1− ε then
4: τ := τ + 1
5: get deterministic A ∈ At′,q′ such that // see text

P
[
A(S(S′)) = B(S′)

∣∣S′ $←MA,τ
]
≥ 1 + γ

2

6: A := A ∪ {A}
7: return A

Fig. 2. Description of the procedure FindCollection used in the proof of Theorem 1.

(A) P[NA(S) > γ · |A|] ≥ 1− 1
4(1− ε)

(B) For all events E (defined by a probability distribution PE|S) such that P[E ] = 1− ε, we have

P
[
A(S(S)) = B(S)

∣∣A $← A, E
]
≥ 1

2
+

1

4 · (1− ε) · |A|γ .

We show how to derive, from a collection A satisfying one of the two conditions, corresponding adver-
saries A(A) and A(B) with time complexity t and making q queries which guess B(S) given access to
S(S) with advantage greater than ε, contradicting the assumed hardness of (S, B).

Without loss of generality, throughout this proof we assume that B(s) is determined by s.

The procedure FindCollection. The procedure FindCollection (cf. Figure 2) starts with A := ∅ and
parameter τ = 0, iteratively adds to A a deterministic12 adversary A with time complexity t′ and query
complexity q′ such that

GuessA(B(S′) |S(S′)) > γ,

for S′ $← MA,τ . (Possibly, it first increments the value of τ by one to ensure that µ(MA,τ ) ≥ 1 − ε.)
Finally, it terminates when the collection A satisfies (at least) one of conditions (A) or (B).

Note that the procedure FindCollection is to be seen as a process constructing a collection, where
in particular adversaries at Line 5 are not found efficiently and explicitly, they are only guaranteed to
exist by Assumption ¬HC.

12 This can be assumed without loss of generality: Given a randomized adversary, an equally good deterministic adversary
can be obtained by fixing its randomness to a good value.
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Correctness of FindCollection. Note that in order for an adversary A as required in Line 5 to
exist under Assumption ¬HC, two conditions must be met immediately before executing Line 5: First,
the measureMA,τ must have density at least 1−ε. Second, there must exist a (ζ1, ζ2)-sampler forMA,τ
and A(S,B) with length ` ≤ sA(S,B)

(ψhc · q′). The following lemmas show that both conditions are always
satisfied.

Lemma 2. At every execution of Line 5 in FindCollection, the condition µ(MA,τ ) ≥ 1− ε holds.

Proof. The proof goes by induction. Clearly, it holds the first time Line 5 is executed, since µ(M∅,0) =
1 ≥ 1−ε, and hence τ is not increased. Assume that the claim of the lemma holds up to the i-th iteration
of the while-loop, and consider the beginning of the (i+ 1)-st iteration: Assume that µ(MA,τ ) < 1− ε.
This means that there existsA and A such that µ(MA,τ ) ≥ 1−ε, and µ(MA∪{A},τ ) < 1−ε. Note that for
all s ∈ S we have NA∪{A}(s) ≤ NA(s) + 1, which in particular implies that MA∪{A},τ+1(s) ≥MA,τ (s)
for all s ∈ S, and hence µ(MA∪{A},τ+1) ≥ µ(MA,τ ) ≥ 1− ε. ut
Lemma 3. For all ζ1, ζ2, all collections of adversaries A and all τ ∈ N, there exists a (ζ1, ζ2)-sampler
for MA,τ and A(S,B) with length ` := sA(S,B)

(ψ · q′), where

ψ :=
4

ζ21
· |A|2 · γ2(1− ε)2 · ln

(
2

ζ2

)
.

Furthermore, if (S(S), B(S)) is deterministic for every value taken by S, an error-free state sampler for
MA,τ and A(S,B) for length ` := sA(S,B)

(|A| · q′) exists.

A proof of Lemma 3 is postponed to Section C.2.

Termination of FindCollection. We prove the following lemma in Section C.3: It upper bounds
the number of iterations after which FindCollection returns an appropriate collection.

Lemma 4. Under the assumption that a good adversary is always found at Line 5, the procedure Find-
Collection terminates after at most 7 · γ−2 · (1 − ε)−3 + 1 iterations of the while-loop, outputting a
collection A of deterministic adversaries, each with time complexity t′ and query complexity q′, such
that |A| ≤ 7 · γ−2 · (1− ε)−3 + 1 and (at least) one of the two conditions (A) and (B) is satisfied.

The final adversaries. In order to conclude the proof, we need to show that such a collection yields
an adversary accessing S(B) and contradicting the assumed hardness of guessing B. This is implied by
the following two lemmas, whose proofs are deferred to Section C.4.

Lemma 5. Let A be a set of deterministic adversaries, each with time complexity t′ and query com-
plexity q′, satisfying Condition (A) and such that |A| ≤ 7 · γ−2 · (1 − ε)−3 + 1. Then, there exists an
adversary A(A) with time and query complexities

t1 :=
4

γ2
· ln
(

4

1− ε

)
· t′ and q1 :=

4

γ2
· ln
(

4

1− ε

)
· q′

such that GuessA
(A)

(B |S) > ε.

Lemma 6. Let A be a set of deterministic adversaries, each with time complexity t′ and query com-
plexity q′, satisfying Condition (B) such that |A| ≤ 7 ·γ−2 ·(1−ε)−3+1 . Then, there exists an adversary
A(B) with time and query complexities

t2 :=
6400

γ2(1− ε)4 · ln
(

160

γ(1− ε)3
)
· t′ and q2 :=

6400

γ2(1− ε)4 · ln
(

160

γ(1− ε)3
)
· q′

such that GuessA
(B)

(B |S) > ε.
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Sampler OA,τ : // collection of adversaries A, τ ∈ N

b
$← A(S,B) // run A(S,B) to get the bit B

σ := state of A(S,B) after outputting B

ψ := 4
ζ21
· |A|2 · γ2(1− ε)2 · ln

(
2
ζ2

)
for all i := 1, . . . , ψ do

A
$← A

vi := A(A(S,B)[σ])⊕B ⊕ 1 // 1 if correct, 0 else
σ := last state of A(S,B) after interacting with A

N := 2|A| ·
(

1
ψ

∑ψ
i=1 vi − 1

2

)
z := max{0,min{1, 1− (N − τ)γ(1− ε)}}
return (σ, z)

Sampler O′A,τ : // collection of adversaries A, τ ∈ N

s
$← PS

ψ := 4
ζ21
· |A|2 · γ2(1− ε)2 · ln

(
2
ζ2

)
for all i := 1, . . . , ψ do

A
$← A

vi(s) := A(S(s))⊕B(s)⊕ 1 // 1 if correct, 0 else

N(s) := 2|A| ·
(

1
ψ

∑ψ
i=1 vi(s)− 1

2

)
z(s) := max{0,min{1, 1− (N(s)− τ)γ(1− ε)}}
return (s, z(s))

Fig. 3. Top: Construction of the state sampler OA,τ for MA,τ and A(S,B). Bottom: Idealized state sampler O′A,τ used in
the proof of Lemma 3.

Concluding the proof. To conclude the proof, we observe that by Assumption ¬HC, Lemmas 2, 3,
and 4, FindCollection outputs a collection A with |A| ≤ 7 ·γ−2 · (1− ε)−3 + 1 satisfying one of conditions
(A) and (B). Then either Lemma 5 or Lemma 6 yields an adversary contradicting the assumed hardness
of (S, B), as by definition of ϕhc, for the time complexity we have t1 ≤ t and t2 ≤ t, as well as q1 ≤ q
and q2 ≤ q.

C.2 Existence of State Samplers (Proof of Lemma 3)

The key observation is that given the collection A as well as black-box access to the system-bit pair
(S(S), B(S)), it is possible to compute a sufficiently good estimate of NA(S) (and thus ofMA,τ (S)) by
letting (randomly chosen) adversaries from A sequentially interact with S(S) and check whether their
outputs equal B or not. In particular, we can use the algorithm A(S,B) in order to simulate (S(S), B(S)).
Here, for notational convenience, we assume that the algorithm A(S,B) first outputs the simulated bit
B, and subsequently simulates S accordingly.

This is summarized by the random process OA,τ , which outputs a valid state of A(S,B), and is
described in Figure 3 on top. We additionally consider the idealized process O′A,τ (depicted in the
lower part of Figure 3) which, instead of using the algorithm A(S,B), uses the actual system-bit pair

(S(S), B(S)) for a random S
$← PS , and produces an estimate Z(S) of MA,τ (S) as in OA,τ , and
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finally outputs the pair (S,Z(S)). (From now on, we use the convention that variables appearing within
the process descriptions are upper-case when seen as random variables.) Obviously, (A(S,B)[Σ], Z) for

(Σ,Z)
$← OA,τ and (S(S), B(S), Z(S)) for (S,Z)

$← O′A,τ are exactly the same, that is, the equivalence

(A(S,B)[Σ], Z) ≡ (S(S), B(S), Z(S))

holds, due to the fact that A(S,B) perfectly simulates (S, B). Therefore, in order to finish the proof of
property (ii) in Definition 1, it suffices to analyze the quality of the estimate Z(S) output by O′A,τ : Let

us fix s ∈ S and consider the random variable V (s) obtained by sampling a random A
$← A and then

letting V (s) := 1 if A(S(s)) = B(s), and V (s) := 0 otherwise. Then, note that

E [V (s)] =
1

|A|
∑
A∈A

P[A(S(s)) = B(s)] =
1

|A|
∑
A∈A

(
1

2
+

GuessA(B(s) |S(s))

2

)
=

1

2
+
NA(s)

2|A| .

Since (S(S), B(S)) is cc-stateless, the pair (S(s), B(s)) is stateless (and in particular, S(s) is state-
less), and the random variables V1(s), . . . , Vψ(s) are independent with the same distribution as V (s). In
particular, E [Vi(s)] = E [V (s)] for all i ∈ {1, . . . , ψ}. The event that Z(s) is a bad estimate, i.e., that

|Z(s)−MA,τ (s)| > ζ1, implies in particular
∣∣N(s)−NA(s)

∣∣ > ζ1
γ(1−ε) and in turn

∣∣∣ψ−1∑ψ
i=1 Vi(s)− E [V (s)]

∣∣∣ >
ζ1

2|A|γ(1−ε) . We conclude by applying Hoeffding’s inequality (Lemma 1),

P [|Z(s)−MA,τ (s)| > ζ1] ≤ P

[∣∣N(s)−NA(s)
∣∣ > ζ1

γ(1− ε)

]
≤ P

[∣∣∣∣∣ 1ψ
ψ∑
i=1

Vi(s)− E [V (s)]

∣∣∣∣∣ > ζ1
2|A|γ(1− ε)

]
≤ 2e

− ζ21
4|A|2γ2(1−ε)2

ψ
= ζ2,

by the choice of ψ.
In the case where (S(S), B(S)) is deterministic given S, then a much simpler (and error-free) state

sampler can be built: Namely, it is sufficient to let all adversaries A ∈ A interact (sequentially) with S
(simulated by A(S,B)), rather then choosing them randomly, and set vi as above. Performing the analysis

as above (via the ideal process O′A,τ ), we see that N(s) indeed equals NA(s), and thus the estimate is
always correct.

C.3 The Procedure FindCollection Terminates (Proof of Lemma 4)

Similarly to the proofs in [24, 21], we define for all collections of adversaries A, all τ ∈ N and all s ∈ S
the quantity

WA,τ (s) :=


τ −NA(s) + 1

2γ(1−ε) if NA(s) ≤ τ ,
MA,τ (s)

2

[
τ + 1

γ(1−ε) −NA(s)
]

if τ < NA(s) < τ + 1
γ(1−ε) ,

0 else.

This quantity is to be interpreted as the area under MA,τ (s), starting from NA(s), as depicted in
Figure 1. We also define the weighted average of WA,τ (s) as

W (A, τ) := E [WA,τ (S)] =
∑
s∈S

PS(s) ·WA,τ (s).

In the following, we study the evolution of this quantity in order to prove termination for the execution
of FindCollection. In particular, there are two causes for a change in the value of W at each iteration:
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First, an adversary A is always added to A. Second, the value τ is possibly incremented by one before
the adversary is added. The following two claims analyze these two cases. We point out that the analysis
is more involved than the one of [21], due to the different termination condition and the underlying
distribution being arbitrary and not necessarily uniform.

The first claim shows that if we add an adversary to A in Line 5, then W (A ∪ {A}, τ) is smaller

than W (A, τ) by at least γ(1−ε)
2 .

Claim. Let A be a collection of adversaries and let τ ∈ N be such that µ(MA,τ ) ≥ 1− ε. Moreover, let
A /∈ A be an adversary such that

GuessA(B(S′) |S(S′)) > γ

for S′ $←MA,τ . Then W (A ∪ {A}, τ) ≤W (A, τ)− γ(1−ε)
2 .

Proof. For all s ∈ S, the definition of NA yields NA∪{A}(s) = NA(s) + GuessA(B(s) |S(s)), and conse-
quently we obtain

WA∪{A},τ (s) ≤WA,τ (s)−GuessA(B(s) |S(s)) · MA,τ (s) +
γ(1− ε)

2
.

Averaging over the choice of S yields

W (A ∪ {A}, τ) =
∑
s∈S

PS(s) ·WA∪{A},τ (s)

≤W (A, τ) +
γ(1− ε)

2
−
∑
s∈S

PS(s) ·GuessA(B(s) |S(s)) · MA,τ (s).

However, note that if S′ $←MA,τ , then by definition PS′(s) := PS(s) · MA,τ (s)/µ(MA,τ ), and hence∑
s∈S

PS(s) ·GuessA(B(s) |S(s)) · MA,τ (s) = µ(MA,τ ) ·GuessA(B(S′) |S(S′)),

and the claim follows from µ(MA,τ ) ≥ 1− ε and GuessA(B(S′) |S(S′)) > γ. ut

The following claim additionally shows bounds on the variation of W (A, τ) upon incrementing τ .

Claim. Let η > 0, letA be a collection of adversaries, and let τ ∈ N. Further assume that P [NA(S) > η] <
1− 1

4(1− ε) and µ(MA,τ ) < 1− ε. Then,

W (A, τ + 1) ≤
{
W (A, τ) + (1− ε) + γ(1−ε)

2 − γ(1−ε)2
8 if τ > η,

W (A, τ) + (1− ε) + γ(1−ε)
2 if τ ≤ η.

Proof. For all s ∈ S we have

WA,τ+1(s) ≤WA,τ (s) +MA,τ (s) +
γ(1− ε)

2
.

In fact, if Nτ (s) ≤ τ , then we even have WA,τ+1(s) ≤WA,τ (s) +MA,τ (s). From this we can infer

W (A, τ + 1) =
∑
s∈S

PS(s) ·WA,τ+1(s)

≤W (A, τ) +
∑
s∈S

PS(s) · MA,τ (s) +
∑

s:NA(s)>τ

PS(s) · γ(1− ε)
2

≤W (A, τ) + (1− ε) + P[NA(S) > τ ] · γ(1− ε)
2

.
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If τ > η, then P[NA(S) > τ ] ≤ P[NA(S) > η] ≤ 1− 1−ε
4 , and thus

W (A, τ + 1) ≤W (A, τ) + (1− ε) +

(
1− 1− ε

4

)
· γ(1− ε)

2

= W (A, τ) + (1− ε) +
γ(1− ε)

2
− γ(1− ε)2

8

whereas if τ ≤ η, we can only conclude that W (A, τ + 1) ≤W (A, τ) + (1− ε) + γ(1−ε)
2 . ut

In the following, let A(i) and τ(i) be the values of A and τ at the beginning of the i-th iteration, i.e.,
when GoodEnough is invoked. In particular, |A(i)| = i− 1. We now show that under the assumption13

that P
[
NA(i)(S) > γ · (i− 1)

]
< 1− 1

4(1− ε) holds, then FindCollection terminates satisfying Condition
(B). To this aim, we define the potential function π such that the potential at the beginning of the i-th
iteration is

π(i) := W (A(i), τ(i))− τ(i) · (1− ε).

Note that initially π(1) = W (∅, 0) − 0 · (1 − ε) = W (∅, 0) = 1
2γ(1−ε) . The above two claims imply the

following for all i’s:

π(i+ 1) ≤


π(i)− γ(1−ε)

2 if τ(i) = τ(i+ 1)
π(i) if τ(i+ 1) = τ(i) + 1 and τ(i) ≤ γ · (i− 1)

π(i)− γ(1−ε)2
8 if τ(i+ 1) = τ(i) + 1 and τ(i) > γ · (i− 1).

In particular, it is important to note that the value π(i) never increases. The following claim proves
that it also decreases sufficiently fast, reaching a negative value after 7 · γ−2 · (1 − ε)−3 + 1 iterations.
Below, we show that in this case, the corresponding collection A satisfies Condition (B).

Claim. For λ := 7 · γ−2 · (1− ε)−3 + 1 we have π(λ) < 0.

Proof. Assume, towards a contradiction, that the claim is wrong, i.e., we have an execution of FindCollection
such that after λ := 7 · γ−2 · (1 − ε)−3 + 1 steps we have π(λ) ≥ 0. Consider the partition I= ∪ I+ =
{1, . . . , λ}, where I= are the iterations i where τ(i) was not increased, whereas in I+ the value of τ(i)
is increased. We also let I∗ := {(1− γ)−1 |I=|+ 2, . . . , λ}. Hence, for all i ∈ I∗ we have

τ(i) ≥ i− 1− |I=| > i− 1− (1− γ)(i− 1) = γ(i− 1),

since τ(i) ≥ i− 1− |I=| for all i ≥ 1, whereas (1− γ)−1 |I=| < i− 1 for all i ∈ I∗. Finally, note that

|I∗ ∩ I+| = |I∗ \ I=| ≥ |I∗| − |I=| ≥ λ− (1− γ)−1 |I=| − 1− |I=| = λ− 2− γ
1− γ |I

=| − 1.

Moreover, we have |I=| ≤ γ−2(1− ε)−2 < γ−2(1− ε)−3, as otherwise this would contradict π(i) ≥ 0 by
the first claim. Using γ ≤ 1

2 , we obtain |I∗ ∩ I+| > 4γ−2(1− ε)−3. However, in every step i ∈ I∗ ∩ I+,

by the above claim the value of π has been decreased by at least γ(1−ε)2
8 , and this implies π(λ) < 0. ut

Finally, we show that if π(i) < 0, then the collection A(i) satisfies Condition (B), and thus termi-
nation is achieved.

13 If this assumption is not satisfied, then GoodEnough will detect this, and return true, which in particular implies
termination of FindCollection, which returns the collection A(i) satisfying Condition (A).
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Adversary A(A): // expecting to interact with system S(s)

ϕA := 4
γ2
· ln
(

4
1−ε

)
for all i := 1, . . . , ϕA do

A
$← A

vi
$← A(S(s))

return majority {vi : i ∈ {1, . . . , ϕA}}

Fig. 4. Adversary A(A).

Claim. If π(i) < 0, then A(i) satisfies

P
[
A(S(S)) = B(S)

∣∣A $← A(i), E
]
≥ 1

2
+

1

4 · (1− ε) · |A(i)| · γ

for all events E (defined by PE|S) such that P [E ] = 1− ε.

Proof. Let τ := τ(i) and A := A(i). Also let E be an arbitrary event (defined by PE|S) such that
p := P [E ] = 1− ε. Then, by the definition of NA,

P
[
A(S(S)) = B(S)

∣∣A $← A, S ∈ E
]

=
1

2
+

1

2(1− ε)|A| ·
∑
s∈S

PSE(s) ·NA(s).

Note that for all s ∈ S it is easy to verify that

WA,τ (s) ≥ τ +
1

2γ(1− ε) −NA(s),

and therefore∑
s∈S

PSE(s) ·NA(s) ≥
∑
s∈S

PSE(s) ·
[
τ +

1

2γ(1− ε) −WA,τ (s)

]
≥ P [E ] ·

(
τ +

1

2γ(1− ε)

)
−
∑
s∈S

PS(s)WA,τ (s) ≥ (1− ε)τ +
1

2γ
−W (A, τ) ≥ 1

2γ
.

The lemma follows by substituting this into the above equation.

Therefore, after at most 7 ·γ−2 · (1− ε)−3 + 1 executions of the while-loop, the procedure FindCollection
outputs a set of adversaries which satisfies at least one of Condition (A) and Condition (B).

C.4 Constructing the Final Adversaries

Proof of Lemma 5. Recall that we assume that

P [NA(S) > γ · |A|] ≥ 1− 1
4(1− ε) > 1− 1

2(1− ε) = 1+ε
2 .

The adversary A(A) proceeds as described in Figure 4.

Let us fix s such that NA(s) > γ · |A|. Then, we denote as I(s) ∈ {0, 1} the indicator random variable

which is 1 if a randomly sampled A
$← A interacting with S(s) is successful, outputting B(s). (Recall
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that B(s) is fully determined by s.) Note that

E [I(s)] = P
[
A(S(s)) = B(s)

∣∣A $← A
]

=
1

|A|
∑
A∈A

P [A(S(s)) = B(s)]

=
1

2
+

1

2 · |A|
∑
A∈A

GuessA(B(s) |S(s)) =
1

2
+
NA(s)

2 · |A| >
1 + γ

2
.

For i = 1, . . . , ϕA, denote as Ii(s) the random variable indicating whether vi equalsB(s) when interacting
with S(s): Since S(s) is stateless, the variables I1(s), . . . , IϕA(s) are independent, with E [Ii(s)] = E [I(s)]
for all i = 1, . . . , ϕA. We can use this (combined with Hoeffding’s inequality) to derive an upper bound
on the failure probability of A(A) given access to S(s),

P
[
A(A)(S(s)) 6= B(s)

]
= P

[
1

ϕA

ϕA∑
i=1

Ii(s) <
1

2

]
≤ P

[
1

ϕA

ϕA∑
i=1

Ii(s) < E [I(s)]− γ

2

]
< e−

γ2

4
ϕA = 1−ε

4 ,

and therefore

P[A(A)(S(S)) = B(S)] > P [NA(S) > γ · |A|] ·
(
1− 1−ε

4

)
≥
(
1− 1−ε

4

)
·
(
1− 1−ε

4

)
≥ 1− 1−ε

2 = 1+ε
2 .

Note that we can fix the choice of ϕA adversaries A1, . . . ,AϕA for the random choices of A maximizing
the success probability of the resulting adversary A(A). The time and query complexity bounds t1 and
q1 are then clear.

Proof of Lemma 6. We define the functions α, α1 : S → [−1, 1] such that

α(s) := 2 · P
[
A(S(s)) = B(s)

∣∣A $← A
]
− 1 and α1(s) := 2 · P

[
A(S(s)) = 1

∣∣A $← A
]
− 1.

for all s ∈ S. We order the elements of S (with positive probability mass) as s1, s2, . . . such that
α(si) ≤ α(si+1) for i = 1, 2, . . .. Then, let i∗ be the (unique) index such that

∑i∗−1
j=1 PS(sj) < 1− ε, but∑i∗

j=1 PS(sj) ≥ 1− ε. We define the event E such that

PE|S(si) :=


1 if i < i∗

(1−ε)−∑i∗−1
j=1 PS(sj)

PS(si∗ )
if i = i∗

0 if i > i∗.

It is easy to verify that P [E ] = 1 − ε. Further, let α∗ := α(si∗). We hence have (recall that |A| ≤
7 · γ−2 · (1− ε)−3 + 1)

P
[
A(S(S)) = B(S)

∣∣A $← A, E
]
>

1

2
+

1

4(1− ε)|A|γ ≥
1

2
+
γ(1− ε)2

40
.

Note that this implies that α∗ > γ(1−ε)2
20 , as otherwise this would contradict the above lower bound on

the guessing probability of a randomly chosen A from the collection A. We consider the adversary A(B)

specified in Figure 5.
In the following, we assume that the above adversary is run on S(s) for some fixed s ∈ S. Denote

as V1(s), . . . , VϕB (s) and α1(s) the corresponding random variables. Consider the random variable V (s)

which is the output of a randomly chosen A
$← A accessing S(s). Note that

E [V (s)] = P
[
A(S(s)) = 1

∣∣A $← A
]

= 1
2 + α1(s)

2 .
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Adversary A(B): // expecting to interact with system S(s)

ϕB := 6400
γ2(1−ε)4 · ln

(
160

γ(1−ε)3
)

for all i := 1, . . . , ϕB do

A
$← A

vi
$← A(S(s))

α1 := 2 ·
(

1
ϕB

∑ϕB
i=1 vi − 1

)
return 1 with probability max

{
0,min

{
1, 12 + α1

2
(
α∗− γ(1−ε)2

20

)
}}

Fig. 5. Adversary A(B).

In particular, since S(s) is stateless, the random variables V1(s), . . . , VϕB (s) are independent, and all

distributed according to V (s). Let now G be the event that |α1(s)− α1(s)| ≤ γ(1−ε)2
40 : By Hoeffding’s

inequality,

P
[
G
]

= P

[
|α1 − α1| >

γ(1− ε)2
40

]

= P

[∣∣∣∣∣ 1

ϕB

ϕB∑
i=1

Vi(s)− E [V (s)]

∣∣∣∣∣ > γ(1− ε)2
80

]
≤ 2e

−
(
γ(1−ε)2

80

)2

ϕB
=
γ(1− ε)3

80
.

For all s ∈ S, define α(s) to be α1(s) if B(s) = 1, and −α1(s) if B(s) = 0, and note that by inspection

P
[
A(B)(S(s)) = B(s)

]
= min

1,
1

2
+

α(s)

2
(
α∗ − γ(1−ε)2

20

)
 .

For any s such that PE|S(s) > 0, then α(s) ≥ α∗, and conditioned on the event G, we have α(s) ≥
α∗ − γ(1−ε)2

40 , and thus

P
[
A(B)(S(s)) = B(s)

∣∣G] = 1.

Moreover, for every other s ∈ S, we have

P
[
A(B)(S(s)) = B(s)

∣∣G] ≥ 1

2
+
α(s)− γ(1−ε)2

40

2
.

Therefore,

P
[
A(B)(S(S)) = B(S)

∣∣ E ,G] > 1

2
+
γ(1− ε)2

40
− γ(1− ε)2

80
=

1

2
+
γ(1− ε)2

80
.

We finally conclude that

P
[
A(B)(S(S)) = B(S)

]
≥ P [G] · P

[
A(B)(S(S)) = B(S)

∣∣G]
≥ P

[
A(B)(S(S)) = B(S)

∣∣G]− P
[
G
]

= P [E ] · P
[
A(B)(S(S)) = B(S)

∣∣G, E]
+ P

[
E
]
· P
[
A(B)(S(S)) = B(S)

∣∣G, E]− P
[
G
]

> ε · 1 +
1

2
(1− ε) +

γ(1− ε)3
80

− P
[
G
]

=
1 + ε

2
,
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as we wanted to show. The time complexity t2 and the query complexity q2 are clear by inspection.

D Proof of the Hardcore Lemma for Computational Indistinguishability
(Theorem 2)

Let S and T be the respective ranges of S and T . We define (F, B) to be the cc-stateless system-bit
pair with a uniform random bit B and where F behaves as S if B = 0 and as T if B = 1. In particular,

(F, B) has state (x, b) ∈ (S × {0}) ∪ (T × {1}), sampled by first letting b
$← {0, 1}, and then choosing

x
$← PS if b = 0 and x

$← PT otherwise, and

(F(x, b), B(x, b)) =

{
(S(x), 0) if b = 0,
(T(x), 1) if b = 1.

The canonical implementation A(F,B) of (F, B) is obtained by first choosing the random bit b
$← {0, 1},

and then using AS or AT to simulate the respective system: The state of A(S,B) is a pair (σ, b) consisting
of the bit b and the current state σ of AS or AT.

By a standard argument,

∆t,q(S,T) = Guesst,q(B |F) ≤ ε,

and Theorem 1 thus implies that there exists a measureM on (S ×{0})∪ (T ×{1}) such that µ(M) ≥
1− ε, and

Guesst′,q′(B
′ |F(X ′)) ≤ γ, (5)

where (X ′, B′) $←M, t′ := t/ϕhc, and q′ := q/ϕhc. Furthermore, a (ζ1, ζ2)-sampler O is associated with
the measure M and A(F,B).

First, note that PB′(0) ∈
[
1−γ
2 , 1+γ2

]
, since otherwise there exists a fixed value b′ ∈ {0, 1} which can

be output by an adversary (with constant time complexity and making no query) to achieve advantage
higher than γ, contradicting (5) for any q′ and reasonable t′. In the following, we assume without loss
of generality that 1−γ

2 ≤ PB′(0) ≤ 1
2 , and 1

2 ≤ PB′(1) ≤ 1+γ
2 . (The other case is symmetric.)

We define the measures M0 : S → [0, 1] and M1 : R → [0, 1] such that

M0(s) :=M(s, 0) and M1(t) :=M(t, 1)

for all s ∈ S and all r ∈ R. Then note that

µ(M0) =
∑
s∈S

PS(s) · M0(s) = 2µ(M) · PB′(0), µ(M1) =
∑
t∈T

PT (t) · M1(t) = 2µ(M) · PB′(1),

which in particular imply (1 − γ) · µ(M) ≤ µ(M0) ≤ µ(M) and µ(M) ≤ µ(M1) ≤ (1 + γ)µ(M).
Consequently, we set MT :=M1, whereas, if µ(M0) < 1− ε, we define

MS(s) :=
ε

1− µ(M0)
· M0(s) +

1− ε− µ(M0)

1− µ(M0)
.

Observe that MS(s) ∈ [0, 1], MS(s) ≥M0(s), and

µ(MS) =
∑
s∈S

PS(s) · MS(s) =
ε

1− µ(M0)
· µ(M0) +

1− ε− µ(M0)

1− µ(M0)
= 1− ε.
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Finally, consider the distribution (X ′′, B′′) which chooses B′′ uniformly at random, and then X ′′ ac-

cording to MS or MT depending on whether B′′ = 0 or B′′ = 1. With S′ $←MS and T ′ $←MT,

∆t′,q′(S(S′),T(T ′)) = Guesst′,q′(B
′′ |F(X ′′))

≤ Guesst′,q′(B
′ |F(X ′)) + 2 · d((B′, X ′), (B′′, X ′′))

≤ γ + 2 · d((B′, X ′), (B′′, X ′′)),

since in general, for any (X1, B1) and (X2, B2), we have

GuessA(B1 |F(X1))−GuessA(B2 |F(X2)) ≤ 2 · d((X1, B1), (X2, B2))

for all adversaries A.14 The following claim yields the desired upper bound.

Claim. d((X ′, B′), (X ′′, B′′)) ≤ γ
2 .

Proof. On the one hand, we first note that for all t ∈ T we have

PX′′B′′(t, 1) =
1

2µ(M1)
· PT (t) · M(t, 1) ≤ 1

2µ(M)
· PT (t) · M(t, 1) = PX′B′(t, 1),

where we have used the fact that µ(M1) ≥ µ(M). On the other hand, for all s ∈ S we have (using
µ(MS) = (1− ε) ≤ µ(M) and M0(s) ≤MS(s))

PX′′B′′(s, 0) =
1

2µ(MS)
· PS(s) · MS(s) ≥ 1

2µ(M)
· PS(s) · M(s, 0) = PX′B′(s, 0).

Therefore,

d((X ′, B′), (X ′′, B′′)) =
∑
t∈T

PX′B′(t, 1)− PX′′B′′(t, 1)

=
1

2

∑
r∈R

PT (t) · M(t, 1) ·
(

1

µ(M)
− 1

µ(M1)

)
=

1

2

(
µ(M1)

µ(M)
− 1

)
≤ γ

2
.ut

Finally, the state sampler O forM and A(F,B) with length ` = sA(F,B)
(ψ ·q′) outputs a triple (b, σ, z),

where σ is a state for AS if b = 0 and a state of AT when b = 1. In particular, for (Σ,B,Z)
$← O,

(AB[Σ], B, Z) ≡ (F(X,B), B, Z(X,B)),

where A0 := AS, A1 := AT, and Z(X,B) is at most ζ1 off M(X,B), except with probability ζ2, for all
values x, b taken by X,B.

Consequently, the state sampler OT forMT outputs (σ, z) sampled according to the output distribu-
tion O conditioned onB = 1. The sampler OS outputs (σ, z′) by taking (σ, z) sampled from O conditioned

on B = 0, and then sets z′ := z if µ(M0) ≥ 1 − ε, and otherwise sets z′ := ε
1−µ(M0)

· z + 1−ε−µ(M0)
1−µ(M0)

.

Clearly, it remains a (ζ1, ζ2)-sampler, due to ε
1−µ(M0)

≤ 1.
Note that Theorem 1 only guarantees that the length of the states output by both samplers is

bounded by max{sAS
(ψhc · q′), sAT

(ψhc · q′)}. The fact that the individual bounds hold for each of the
sampler can be inferred from a careful analysis of the proof of Theorem 1. (However, note that this more
precise statement is in general not necessary in the following, but will produce slightly nicer statements.)

Also, if both S and T are cc-stateless random functions, then (F, B) has deterministic behavior for
any value of its initial state, and thus O is error-less, which implies that OS and OT are also error-less.

14 To see this, note that the distinguisher which given (X,B) simulates the interaction of A with F(X) and outputs 1 if
and only if its output equals B achieves advantage

1

2

[
GuessA(B1 |F(X1))−GuessA(B2 |F(X2))

]
≤ d((X1, B1), (X2, B2)).
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E Cascade of Large-Min-Entropy Permutations

E.1 Indistinguishability Proofs: A Primer and a New Lemma

Before we turn to the proof of Theorem 3, this section provides a self-contained introduction to se-
lected tools from the random systems framework [27, 30] which are needed for information-theoretic
indistinguishability proofs.

Monotone Event Sequences and Indistinguishability. Given a system S, a monotone event
sequence (MES) A = A0, A1, . . . on S is a sequence of events15 where Ai is defined after the i-th query
has been answered by S and such that A0 is defined before the first query is issued. Furthermore, if Ai
does not hold for some i > 0 (i.e. the complement Ai holds), then Aj does not hold for all j ≥ i. When
Ai holds, and Ai+1 occurs, then we say that A fails.

Definition 2. Let S and T be systems, and let A be a MES on S. We write S|A ≡ T if for all i ≥ 1
and for all yi, x

i = [x1, . . . , xi], and yi−1 = [y1, . . . , yi−1],

pSYi|XiY i−1Ai
(yi, x

i, yi−1) = pTYi|XiY i−1(yi, x
i, yi−1).

Furthermore, if B = B0, B1, . . . is a MES on T, we write SA ≡ TB if for all i ≥ 1 and for all
yi, x

i = [x1, . . . , xi], and yi−1 = [y1, . . . , yi−1]

pSAiYi|XiY i−1Ai−1
(yi, x

i, yi−1) = pTBiYi|XiY i−1Bi−1
(yi, x

i, yi−1).

The shorthand νq(S, Aq) stands for the optimal probability that some q query distinguisher makes A fail
while interacting with S, i.e., that the event Aq holds. The following lemma [27, 30] shows the connection
between the probability of making a MES fail and the distinguishing advantage.

Lemma 7. Let S and T be systems, and let A = A0, A1, . . . and B = B0, B1, . . . be MES on S and T,
respectively. If S|A ≡ T or SA ≡ TB, then

∆q(S,T) ≤ νq(S, Aq).

We also employ a new lemma (a similar statement was given in [33]) that simplifies the problem of
upper bounding νq(S, Aq) and considers the setting where a MES A = A0, A1, . . . is defined on a system
S ≡ S(S) (i.e., where S is some internal variable of S) such that the behavior of S is independent of S
as long as A does not fail. We show that if A only depends on the input-output behavior and the value
of S, we can equivalently consider the maximal probability, over all compatible transcripts (Xq, Y q),

that a state S
$← PS provokes Aq. This will be very handy in the proof of the next section.

Lemma 8. Let S ≡ S(S) be a system depending on a state S, and let T be an additional system. Let
A be a MES on S such that for all i ≥ 1 there exists a sequence of sets E0, E1, E2, . . . with the property
that Ai holds if and only if (Xi, Y i, S) ∈ Ei. If for all i ≥ 1 and all (xi, yi, s) /∈ Ei

pSYiAi|XiY i−1Ai−1S
(yi, x

i, yi−1, s) = pSYi|XiY i−1Ai−1S
(yi, x

i, yi−1, s) = pTYi|XiY i−1(yi, x
i, yi−1), (6)

then
∆q(S,T) ≤ max

xq ,yq
P [(xq, yq, S) ∈ Eq] ,

where the maximum is taken over all sequence of inputs xq = [x1, . . . , xq] and outputs yq = [y1, . . . , yq]
which are compatible with an interaction with S, and the probability is over the choice of S.

15 We do not follow our notational conventions by writing Ai instead of Ai. This is in order to be consistent with existing
literature on random systems.
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Proof. We define the system H ≡ H(S) which initially chooses the (secret) state S according to the
distribution PS , and then ignores it and behaves as T. Obviously, T ≡ H. We define the MES B on H
which fails after i queries if (Xi, Y i, S) ∈ Ei. Then, for all i ≥ 1 and all (xi, yi, s) /∈ Ei

pSAiYi|XiY i−1Ai−1S
(yi, x

i, yi−1, s) = pTYi|XiY i−1(yi, x
i, yi−1) = pHYiBi|XiY i−1Bi−1S

(yi, x
i, yi−1, s),

which in particular implies SA ≡ HB, and therefore by Lemma 7, this implies that

∆q(S,T) = ∆q(H,S) ≤ νq(H, Bq).

Let D be a q query distinguisher interacting with S. Then we have (with PDH denoting probabilities
in the random experiment where D interacts with H)

PDH
[
Bq
]

=
∑
xq ,yq ,s

PDH
XqY qSBq

(xq, yq, s) =
∑
xq ,yq ,s

PS(s) · PDH
XqY q |S(xq, yq, s) · pH

Bq |XqY qS
(xq, yq, s)

=
∑
xq ,yq ,s

PS(s) · PDH
XqY q(x

q, yq) · pH
Bq |XqY qS

(xq, yq, s)

=
∑
xq ,yq

PDH
XqY q(x

q, yq) ·
∑
s

PS(s) · pH
Bq |XqY qS

(xq, yq, s)︸ ︷︷ ︸
=PS [(xq ,yq ,S)∈Eq ]

,

and the claim follows from the fact that the maximum is at least as large as the average. ut

E.2 Proof of Theorem 3

In this section, we present a proof of the following theorem.

Theorem 3 (Cascade of Large-Min-Entropy Permutations). For all q, Λ ≥ 1,

∆q(Q1 B Q2,P) ≤ ∆q(〈Q1 B Q2〉 , 〈P〉) ≤ 4qΛ
N + 2Λ(q+Λ)

(1−ε)N + 2

(
q log((1−ε)−1)

Λ

) 1
2

.

In the following, recall that the Shannon entropy of X is H(X) := −∑x∈X PX(x) · logPX(x)
(with 0 · log 0 = 0). Also, throughout this section, we let N := |X | and for an integer N , we define
N (i) := N · (N − 1) · · · (N − i + 1). In particular, N (N) = N !. For every distinguisher D and for a
cc-stateless two-sided random permutation 〈Q〉 with domain X , we define the two-sided random per-
mutation

〈
QD

〉
with domain X which is initialized by letting D interact with Q: If (x1, y1), . . . , (xΛ, yΛ)

are the resulting input-output pairs, i.e., for all i either a forward query (xi,+) returned yi or a backward
query (yi,−) returned xi, then 〈QD〉 answers backward and forward queries according to a randomly
chosen permutation Q constrained to Q(xi) = yi for all i ∈ {1, . . . , Λ}. The following lemma states that
if a cc-stateless two-sided permutation 〈Q〉 behaves according to a permutation table whose distribution
has large Shannon entropy, than there always exists a good deterministic D such that 〈Q〉 and 〈QD〉
are indistinguishable.

Lemma 9. For all q, Λ > 1 and for all cc-stateless two sided random permutations 〈Q〉 with domain
X behaving according to a function table Q such that H(Q) ≥ log (N !)− δ, there exists a deterministic
distinguisher D making at most Λ queries such that

∆q(〈Q〉, 〈QD〉) ≤
(
qδ

Λ

) 1
2

.
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The proof of Lemma 9 follows the approach of a similar result by Unruh [43] for the simpler case of
random functions, and is postponed to Section E.3. Lemma 9 implies that in our settings there exists
D1 and D2 such that for i = 1, 2,

∆q(〈Qi〉 , 〈Qi〉Di
) ≤

(
qδ

Λ

) 1
2

.

Let 〈Q′i〉 := 〈(Qi)Di
〉 for i = 1, 2 be the two corresponding systems.

The Hybrid Systems 〈H〉.We introduce a hybrid two-sided (stateful) random permutation 〈H〉, which
simulates the cascade 〈Q′1 B Q′2〉, with some differences. The two-sided permutation 〈H〉 is initialized
by running D1 and D2 on Q1 and Q2, respectively: Let

T (1) :=
{

(x
(1)
1 , y

(1)
1 ), . . . , (x

(1)
Λ , y

(1)
Λ )
}

and T (2) :=
{

(y
(2)
1 , z

(2)
1 ), . . . , (y

(2)
Λ , z

(2)
Λ )
}

be the resulting input-output pairs. We also use the shorthands

X (1) := {x(1)1 , . . . , x
(1)
Λ }, Y(1) := {y(1)1 , . . . , y

(1)
Λ }, Y(2) := {y(2)1 , . . . , y

(2)
Λ }, Z(2) := {z(2)1 , . . . , z

(2)
Λ }.

Additionally 〈H〉 maintains a set of triples Q (which is initially empty). A triple (x, y, z) ∈ Q means
that the first permutation in the cascade simulated by 〈H〉 maps x to y, whereas the second one maps
y to z. For notational convenience, we let Q1 be the set of elements x which appear as first component
of a triple in Q. Similarly, we define Q2 and Q3 as the projections on the second and third components,
respectively.

Also, at every point in time in the interaction, let T̃ (1) ⊆ T (1) be the subset of pairs which do not
share a component with Q1 and Q2, and let T̃ (2) be defined analogously. Also, let X̃ (1), Ỹ(1), Ỹ(2) and
Z̃(2) be the associated projections.

On input (x,+) with x /∈ Q1, a new triple (x, y, z) with y /∈ Q2 and z /∈ Q3 is added as follows:

(A) If there exists (x, y′) ∈ T̃ (1), then we set y := y′. Furthermore, if there exists (y, z′) ∈ T̃ (2), then

we set z := z′. Otherwise we choose z
$← X \Q3.

(B) Otherwise, we set y
$← X \Q2 (i.e., the set of all values which have not been used yet). Furthermore,

if some (y, z′) ∈ T̃ (2), then z := z′. Otherwise, we set z
$← X \ (Q3 ∪ Z̃(2)).

Backward queries (y,−) are answered symmetrically.

Bounding ∆q(〈Q′1 B Q′2〉 , 〈H〉). The only difference between 〈H〉 and 〈Q′1 B Q′2〉 occurs in (A) when

sampling z
$← X \ Q3 rather than z

$← X \ (Q3 ∪ Z(2)) and in (B) when y
$← X \ Q2 rather than

y
$← X \ (Q2 ∪ Y(1)). Also, the symmetrical statement holds for backward queries.
Consequently, we define a MES A = A1, A2, . . . on 〈H〉 which fails as soon as an element z ∈ Z(2),

or y ∈ Y(1) (in a forward query), or x ∈ X (1), or y ∈ Y(2) (in a backward query) is sampled. Clearly
〈H〉 |A ≡ 〈Q′1 B Q′2〉, and by Lemma 7,

∆q(〈H〉 ,
〈
Q′1 B Q′2

〉
) ≤ νq(〈H〉 , Aq).

To upper bound νq(〈H〉 , Aq), we think of the four assignments of interest to be equivalently executed as
follows: Initially, three independent lists x′1, . . . , x

′
q, y
′
1, . . . , y

′
q, and z′1, . . . , z

′
q, consisting each of uniform

independent random distinct elements of X , are sampled. Whenever we have to assign a value x′, y′, or
z′ in one of the four cases of interest, we pick the first element from the corresponding list, and delete
it from the list. Also, whenever 〈H〉 adds a triple (x′, y′, z′) to Q, the values x′, y′, and z′ are removed
from the corresponding lists, if they appear in them, after the query is answered.
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The probability that Aq occurs is upper bounded by the probability that one of X (1) ∩{x′1, . . . , x′q},
Y(1)∩{y′1, . . . , y′q}, Y(2)∩{y′1, . . . , y′q}, or Z(2)∩{z′1, . . . , z′q} is non-empty. As every element of the three
lists is, individually, uniformly distributed, the union bound yields

∆q(〈H〉 ,
〈
Q′1 B Q′2

〉
) ≤ νq(〈H〉 , Aq) ≤

4qΛ

N
.

Bounding ∆q(〈H〉 , 〈P〉). In the following, we consider the sets X (1)
in ⊆ X (1) and Y(1)

in ⊆ Y(1) of inputs

of forward queries and backward queries of D1, respectively. Analogously, we define Y(2)
in and Z(2)

in .
Furthermore, we let

X (1)
out := X (1) \ X (1)

in ,Y(1)
out := Y(1) \ Y(1)

in ,Y
(2)
out := Y(2) \ Y(2)

in ,Z
(2)
out := Z(2) \ Z(2)

in .

Then, we define the MES B = B1, B2, . . . on 〈H〉 such that Bi is false if at initialization Y(1)
out ∩Y(2) 6= ∅,

or Y(2)
out ∩ Y(1) 6= ∅ occur, or one the following is true:

- A forward query Xj = (x,+) (with j ∈ {1, . . . , i}) with x ∈ X (1)
out is issued;

- A backward query Xj = (z,−) (with j ∈ {1, . . . , i}) with z ∈ Z(2)
out is issued.

Assume that the i-th query is a forward query (x,+). (For a backward query, the argument is symmetric.)
Then, given that Bi holds, we consider two cases:

- If (A) occurs, then the fact that Bi holds yields that x = x
(1)
j ∈ X

(1)
in (for some j ∈ {1, . . . , Λ}), and

that y
(1)
j /∈ Y(2), which in turn implies y

(1)
j /∈ Ỹ(2): Thus a random value from X \ Q3 is returned.

- Otherwise, if (B) occurs, consider a particular value z ∈ X \ Q3. If z = z
(2)
j ∈ Z̃(2) (for some

j ∈ {1, . . . , Λ}), the probability that this value is returned is 1
|X\Q2| = 1

|X\Q3| , i.e., the probability

that y
(2)
j ∈ Ỹ(2) is chosen.

On the other hand, if z /∈ Z̃(2), the probability that z is returned equals∣∣∣X \ (Q2 ∪ Ỹ(2))
∣∣∣

|X \ Q2|
· 1∣∣∣X \ (Q3 ∪ Z̃(2)

)∣∣∣ =
1

|X \ Q2|
=

1

|X \ Q3|
,

since |Q2| = |Q3|, Ỹ(2) ∩Q2 = ∅, Z̃(2) ∩Q3 = ∅, and
∣∣∣Ỹ(2)

∣∣∣ =
∣∣∣Z̃(2)

∣∣∣.
Also, with the state S consisting of a description of T (1) and T (2), note that Bi only depends (deter-
ministically) on S and Xi, Y i−1, and the conditions for applying Lemma 8 are fulfilled with T being a
URP, since

p
〈H〉
YiBi|XiY i−1Bi−1S

= p
〈H〉
Bi|XiY i−1Bi−1S

· p〈H〉
Yi|XiY i−1BiS

= p
〈H〉
Bi|XiY i−1Bi−1S

· p〈P〉
Yi|XiY i−1 .

Given input-output pairs (x1, z1), . . . , (xq, zq), we sample

(X
(1)
1 , Y

(1)
1 ), . . . , (X

(1)
Λ , Y

(1)
Λ ) and (Y

(2)
1 , Z

(2)
1 ), . . . , (Y

(2)
Λ , Z

(2)
Λ )

by letting D1 and D2 interact with Q1 and Q2 independently, and upper bound the advantage by
P [E1 ∨ E2] ≤ P [E1]+P [E2], where E1 is the event that any of the outputs of the queries of D1 is in Y(2)∪X q
and E2 is the event that any of the outputs of the queries of D2 is in Zq∪Y(1). Note that the sequence of
outputs of queries of D1 and D2 have both min-entropy at least log

(
N (Λ)

)
− log

(
(1− ε)−1

)
, i.e., each
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such sequence occurs with probability at most 1
(1−ε)N(Λ) . On the other hand, since

∣∣X i ∪ Y(2)
∣∣ ≤ q + Λ

and
∣∣Z i ∪ Y(1)

∣∣ ≤ q+Λ, there are (by a union bound) at most Λ(q+Λ)·(N−1)(Λ−1) sequences provoking
E1 and E2. Thus, we conclude that

∆q(〈H〉 , 〈P〉) ≤ 2 · Λ(q + Λ)

(1− ε)N .

Wrapping up. We can now collect the previous bounds:

∆q(〈Q1 B Q2〉, 〈P〉) ≤ ∆q(〈Q1 B Q2〉, 〈Q1 B Q′2〉)+
+∆q(〈Q1 B Q′2〉, 〈Q′1 B Q′2〉) +∆q(〈Q′1 B Q′2〉, 〈P〉)

≤ ∆q(〈Q1〉 ,
〈
Q′1
〉
) +∆q(〈Q2〉 ,

〈
Q′2
〉
) +∆q(

〈
Q′1 B Q′2

〉
, 〈P〉)

≤ 2 ·
(
q log((1−ε)−1)

Λ

) 1
2

+∆q(
〈
Q′1 B Q′2

〉
, 〈P〉),

where we used the fact that removing the first (or the second) permutation only makes distinguishing
easier. Furthermore,

∆q(
〈
Q′1 B Q′2

〉
, 〈P〉) ≤ ∆q(

〈
Q′1 B Q′2

〉
, 〈H〉) +∆q(〈H〉 , 〈P〉) ≤

4qΛ

N
+

2Λ(q + Λ)

(1− ε)N ,

which concludes the proof.

E.3 Proof of Lemma 9

Recall that we want to prove the following lemma.

Lemma 9. For all q, Λ > 1 and for all cc-stateless two sided random permutations 〈Q〉 with domain
X behaving according to a function table Q such that H(Q) ≥ log (N !)− δ, there exists a deterministic
distinguisher D making at most Λ queries such that

∆q(〈Q〉, 〈QD〉) ≤
(
qδ

Λ

) 1
2

.

For a deterministic distinguisher D making q non-redundant16 two-sided queries X1, . . . , Xq such
that Xi ∈ {(x,+), (y,−) : x, y ∈ X} to a two-sided cc-stateless random permutation 〈Q〉 with domain
X , it is convenient to define the quantity

HD(Q) := H(Y1, Y2, . . . , Yq),

where Y1, Y2, . . . , Yq ∈ X are the answers of these queries made by D (in the order they are issued). As
all queries are non-redundant, q ≤ N . Furthermore, note that the quantity HD(Q) makes only sense
if D is deterministic, as otherwise additional randomness can be injected by D itself. Additionally, we
define the function d : {1, . . . , N} → R such that

d(q) := max
D

[
logN (q) − HD(Q)

]
,

where the maximum is taken over all D’s as above making exactly q non-redundant queries, i.e., d(q)
measure intuitively the best deviation from the maximal possible entropy which can be achieved by
such a q-query D, which is logN (q). We will need the following properties for d.

16 This means that the distinguisher D does not query any value for which it knows the output, for instance, if a query
(x,+) returns y, it will never issue a query (y,−) at a later point in time.
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Claim. The function d satisfies the following two properties:

(i) d(N) ≤ δ.
(ii) d(i) ≤ d(i+ 1) for all i ∈ {0, . . . , N − 1}.

Proof. For (i), fix an arbitrary N -query deterministic D interacting with Q. Note that with knowledge
of D, given answers Y1, . . . , YN we can uniquely reconstruct the function table Q, since we can simulate
an execution of D, answering each query Xi with Yi, to obtain the corresponding queries X1, . . . , XN ,
and from these Q is fully determined by the assumption on the queries of D being non-redundant. Also
given the function table of Q, the variables Y1, . . . , Yq are fully determined. Hence,

HD(Q) = H(Y1, Y2, . . . , YN ) = H(Q) ≥ logN !− δ,

which implies d(N) ≤ δ.
To prove (ii), fix some i > 0, and let D be such that it makes i queries X1, . . . , Xi, and maximizes

logN (i) − HD(Q). Then, for any D′ which acts as D for its first i queries, and makes an additional
non-redundant query Xi+1 /∈ {X1, . . . , Xi} we have (with Y1, . . . , Yi+1 ∈ X being the corresponding
answers)

d(i+ 1) ≥ logN (i+1) − H(Y1, . . . , Yi, Yi+1)

= logN (i) − H(Y1, . . . , Yi)︸ ︷︷ ︸
=d(i)

+ log(N − i)− H(Yi+1 |Y1, . . . , Yi)︸ ︷︷ ︸
≥0

,

since H(Yi+1 |Y1, . . . , Yi) ≤ log(N − i), due to the fact that i input-output pairs for Q are determined
by Y1, . . . , Yi (and D), and thus at most N − i values are possible for Yi+1. ut

The following claim shows that since d grows overall at most by δ on its domain (and it is monotone),
then there must be a portion of length q which is almost flat among the first Λ values i.

Claim. There exists i∗ ∈ {0, . . . , Λ} such that

d(i∗ + q)− d(i∗) ≤ qδ

Λ
.

Proof. Define λ :=
⌊
Λ
q

⌋
as well as the set S := {i · q : i = 0, . . . , λ} ⊆ {0, . . . , Λ}. Clearly, d(λ · q+ q) ≤

d(N) ≤ δ, and hence there must be an i∗ in S such that d(i∗+ q)−d(i∗) ≤ δ
λ+1 , as otherwise this would

contradict d(λq + q) ≤ δ. The claim follow by the fact that λ+ 1 ≥ Λ
q . ut

In the following, let i∗ as guaranteed to exist by Claim E.3, and take D such that it maximizes
logN (i∗) − HD(Q(X1) . . .Q(Xi∗)). Consider now the (two-sided) random permutation 〈Q→ P〉 which
behaves as 〈Q〉 for the first i∗ queries, but then behaves as a randomly chosen permutation consistent
with the first i∗ queries. Additionally, let D be an arbitrary q-query deterministic distinguisher issuing
non-redundant queries: We define as D→ D be the distinguisher making i∗+ q non-redundant queries,
which runs D and then runs D, but does not repeat queries for which the answers is known due to a
query of D. In particular, it asks possibly extra (dummy) queries in order to ensure that i∗ + q queries
are always asked.

Claim (A). For all deterministic distinguishers D issuing q queries, we have

∆D(〈Q〉, 〈QD〉) ≤ d
(
P
(D→D)〈Q〉
Y i∗+q

,P
(D→D)〈Q→P〉
Y i∗+q

)
,

where P
(D→D)〈Q〉
Y i∗+q

and P
(D→D)〈Q→P〉
Y i∗+q

are the distributions of the answers of the queries of D → D to
the given systems when interacting with the systems 〈Q〉 and 〈Q→ P〉, respectively.
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Proof. Given the value of Y i∗+q for a distinguisher attempting to distinguish P
(D→D)〈Q〉
Y i∗+q

and P
(D→D)〈Q→P〉
Y i∗+q

,

one possible strategy is to mimic the behavior of D in the corresponding interaction with
〈
QD

〉
or 〈Q〉.

ut

Recall that the Kullback-Leibler divergence of PX and PY is defined as

D(PX‖PY ) :=
∑
x

PX(x) · log

(
PX(x)

PY (x)

)
.

Using the shorthands P(1) and P(2) for P(D→D)〈Q〉 and P(D→D)〈Q→P〉, respectively, we have

D
(
P
(1)

Y i∗+q

∥∥∥P(2)

Y i∗+q

)
=
∑
yi∗+q

P
(1)

Y i∗+q
(yi
∗+q) · log

(
P
(1)

Y i
∗+q(y

i∗+q)

P
(2)

Y i∗+q
(yi∗+q)

)

=
∑
yi∗

P
(1)

Y i∗
(yi
∗
) ·
∑
yq

P
(1)

Yi∗+1···Yi∗+q |Y i∗
(yq, yi

∗
) · log

P
(1)

Yi∗+1···Yi∗+q |Y i∗
(yq, yi

∗
)

P
(2)

Yi∗+1···Yi∗+q |Y i∗
(yq, yi∗)


where we have used the fact that P

(1)

Y i∗
= P

(2)

Y i∗
, since the first i∗ queries are answered by 〈Q〉 in both

cases. Furthermore, we have log(P
(2)

Yi∗+1···Yi∗+q |Y i∗
(yq, yi

∗
)) = − log [(N − i∗) · · · (N − i∗ − q + 1)]. Also

note that∑
yi∗

P
(1)

Y i∗
(yi
∗
) ·
∑
yq

P
(1)

Yi∗+1···Yi∗+q |Y i∗
(yq, yi

∗
) · log

(
P
(1)

Yi∗+1···Yi∗+q |Y i∗
(yq, yi

∗
)
)

= H(Yi∗+1, . . . , Yi∗+q|Y i∗).

Therefore, replacing this in the above, and using that H(Yi∗+1, . . . , Yi∗+q|Y i∗) = H(Y i∗+q)− H(Y i∗),

D
(
P
(1)

Y i∗+q

∥∥∥P(2)

Y i∗+q

)
= log [(N − i∗) · · · (N − i∗ − q + 1)]− H(Yi∗+1, . . . , Yi∗+q|Y i∗)

= logN (i∗+q) − H(Y i∗+q)−
(

logN (i∗) − H(Y i∗)
)
≤ d(i∗ + q)− d(i∗) ≤ qδ

Λ
.

It is a well-known fact that any two distributions PX and PY satisfy d(PX ,PY ) ≤
√
D(PX‖PY ) (cf.

e.g. [5]). This in particular (combined with Claim (A)) implies that for all deterministic D issuing q

queries we have ∆D(〈Q〉, 〈QD〉) ≤
√

qδ
Λ , which is a bound for any distinguisher issuing q queries, since

a randomized distinguisher can never outperform a deterministic one.

F Uniform Hardcore Lemmas

All results of this paper are given in the non-uniform setting. On the one hand, this considerably
simplifies the presentation of the paper and permits to convey the main ideas. On the other hand,
we feel that the non-uniform model has established itself as the more relevant adversarial model in
cryptography, as in particular it allows to make concrete statements, and it is questionable whether the
higher complexity involved in uniform reductions is justified. Still, it is an interesting question to find
out whether a uniform reduction is indeed possible. This section discusses uniform versions of the results
of this paper. We omit full proofs of the statements, and only briefly illustrate the main modifications
of the existing proofs in order to derive the corresponding uniform statements.

In the following, we say that a (uniform) algorithm is efficient (or polynomial-time) if its running
time is polynomial in the (understood) security parameter n and the total length of the inputs it obtains.
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In particular, we use poly as the placeholder for a polynomial function in both these parameters. (In line
with this, ∆poly(S,T) and Guesspoly(B |S) denote the best advantages for polynomial-time distinguishers
/ adversaries.) Finally, we remark that even though all statements are asymptotic in nature, we omit
security parameters to a large extent in order to keep the presentation simpler. This should not cause
any confusion.

F.1 The Uniform Hardcore Lemma for System-Bit Pairs

In the following, we redefine

ψhc :=
7200

γ2(1− ε)4ζ21
· ln
(

2

ζ2

)
.

The statement of Theorem 1 can be translated to the uniform setting following the same lines of
Holenstein’s uniform hardcore lemma [21].

Theorem 6 (Uniform Hardcore Lemma for System-Bit Pairs). Let (S, B) ≡ (S(S), B(S)) be
a cc-stateless system-bit pair with an efficient implementation A(S,B) with space complexity sA(S,B)

.
Furthermore, for some ε ∈ [0, 1) (with 1− ε noticeable)

Guesspoly(B |S) ≤ ε.

For all noticeable ζ1 > 0, all ζ2 = 2−poly(k) > 0, and all 0 < γ ≤ 1
2 (such that 2ζ1

1−ε + ζ2 ≤ γ
4 and

1 − ε − ζ1 − ζ2 is noticeable), and for all polynomial-time q′-query (uniform) oracle adversaries A(·),
there exists a measure M for (S, B) with µ(M) ≥ 1 − ε such that the following two properties are
satisfied:

(i) There exists a (ζ1, ζ2)-sampler O for M and A(S,B) with length ` := sA(S,B)
(ψhc · q′). In partic-

ular, if (S(s), B(s)) is deterministic for all s, then O is a (0, 0)-sampler for M and A(S,B) with
length sA(S,B)

((256 · γ−2 · (1− ε)−3) · q′).
(ii) For S′ $←M, 17

GuessA
O
(B(S′) |S(S′)) ≤ γ.

We note that the statement is weaker than the one of Theorem 1 in that we only provide one good
measure for every adversary. This is however sufficient for most applications. Note that the length of
the states returned by the sampler only depends on the number of queries q′, but is independent of the
time complexity of A (and the length of oracle queries A expects). Otherwise, it would be possible that
the statement only holds for adversaries which cannot retrieve the output of the sampler.

Rather than giving a full proof, we opt for pointing out the modifications to be made to the proof of
Theorem 1 to obtain a uniform reduction. We postpone a full analysis of the success probability (which
relies on standard techniques similar to the ones of [21]) of the reduction to a later version of this paper.
We only consider the general case where (S(s), B(s)) is possibly randomized. (The deterministic state-
ment will follow in the same way as in the non-uniform case.) Once again, we proceed by contradiction,
and the corresponding initial assumption, which we tacitly make from now on, is modified as follows:

Assumption ¬HC’. There exist noticeable ζ1, γ, and ζ2 = 2−poly(n) (with the property that
2ζ1
1−ε + ζ2 ≤ γ

4 and 1 − ε − ζ1 − ζ2 is noticeable), as well as a polynomially bounded q′, and an
efficient q′-query oracle adversary A∗ which satisfies

GuessA
O
(B(S′) |S(S′)) > γ

17 That is, A is given access to an oracle which upon each invocation ignores its input and returns a state sampled according
to the state sampler.
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Procedure GoodEnough(A): // collection of adversaries A
1: if A = ∅ then return false

2: ρ := Estimate-ρ(A)
3: p := Estimate-p(A)
4: if ρ ≥ 1− 1−ε

3 ∨ p ≥ 1
2 + 5

32·(1−ε)·|A|γ then
5: return true

6: else
7: return false

Fig. 6. Procedure GoodEnough in the proof of the uniform Hardcore Lemma.

for all measuresM for (S, B) with µ(M) ≥ 1− ε admitting a (ζ1, ζ2) state-sampler O for A(S,B)

with length `, and S′ $←M.

The first step is to transform A∗ into a more convenient form. (We omit the proof of the following
lemma, which follows the lines of a similar statement in [21].)

Lemma 10. There exists an efficient oracle adversary B∗ which, for all measures M for (S, B) with
µ(M) ≥ 1 − ε admitting a (ζ1, ζ2)-sampler O for A(S,B) with length `, outputs with overwhelming
probability, given oracle access to O, an efficient deterministic q′-query adversary A (making no oracle
queries) such that

GuessA(B(S′) |S(S′)) > γ/6

for S′ $←M.

To ensure a consistent notation with the non-uniform case, in the remainder of this section the
parameter γ will equal γ/6 for the “actual” γ that appears in Assumption ¬HC’. The security reduction
implements a polynomial-time adversary A′ with GuessA

′
(B(S) |S(S)) > ε by initially running the

procedure FindCollection, using the oracle adversary (B∗)O at Line 5 to obtain an adversary A to
be added to the collection, and the state-sampler O for MA,τ accessed by B∗ is simulated (also in
polynomial-time) using the procedure given in the proof of Lemma 3. The final collection A output
when GoodEnough returns true is used according to A(A) or A(B) depending on whether (a variation
of) Condition (A) or Condition (B) is satisfied.

However, the parameters ρ, p (both in GoodEnough), and α∗ (in A(B)) cannot be computed exactly:
The procedure GoodEnough is consequently modified, as in Figure 6, so that these parameters are
estimated and the conditions in the if-statement are adapted accordingly. The associated procedures
Estimate-ρ and Estimate-p are described in detail in Figure 7. In both descriptions, we assume without
loss of generality that A(S,B) first outputs the bit B, and then simulates S. It can be shown that both
procedures ensure that GoodEnough returns true whenever one of Conditions (A) or (B) is satisfied,
which implies that the analysis of termination for FindCollection remains unchanged. Also, to take into
account possible estimation errors, A(A) can simply be modified to work under the condition that
P
[
NA(S) > γ

2 |A|
]
≥ 1− 5(1−ε)

12 by setting ϕA appropriately. Also, in the same way, we can ensure that
its advantage is noticeably higher than ε in order to compensate for the negligible error in the reduction.

Additionally, we need to adapt A(B) to only use the guarantee that p ≥ 1
2 + 1

16·(1−ε)·|A|·γ (which

is unproblematic), and furthermore, we need to additionally estimate α∗: This can be done as the
computation of pi∗ in Estimate-p, we the difference that we compute

αi := 2 ·

 1

r′

r′∑
j=1

bj − 1

 ,

38



Procedure Estimate-ρ(A): // collection of adversaries A

r :=
(

12
1−ε

)2
· n

r′ :=
(
64
γ

)2
· n

for all i = 1, . . . , r do

b
$← A(S,B)[⊥]

σ0 := state of A(S,B) after outputting b
for all j = 1, . . . , r′ do

Ai,j
$← A

bj := Ai,j(A(S,B)[σj−1])⊕ b⊕ 1
σj := last state of A(S,B)[σj−1].

N i := 2 · |A| ·
(

1
r′
∑r′

j=1 bj − 1
2

)
.

ρ :=
{i :N i>

3γ
4
·|A|}

r
return ρ

Procedure Estimate-p(A): // collection of adversaries A
r := 1024 · γ2 · |A|2 · n
r′ := 1024 · (1− ε)2 · γ2 · |A|2 · n
for all i = 1, . . . , r do

b
$← A(S,B)[⊥]

σ0 := state of A(S,B) after outputting b
for all j = 1, . . . , r′ do

Ai,j
$← A

bj := Ai,j(AS[σj−1])⊕ b⊕ 1
σj := last state of A(S,B)[σj−1]

pi := 1
r′
∑r′

j=1 bj .
reorder p1, . . . , pr such that pi ≤ pi+1 for all i = 1, . . . , r − 1
i∗ := (1− ε)r
p := 1

i∗−1
∑i∗−1

i=1 pi
return p

Fig. 7. Procedures Estimate-ρ and Estimate-p in the proof of the uniform Hardcore Lemma.

and take αi∗ as an approximation of α∗. Also, again we have to ensure that the advantage is noticeably
higher than ε to compensate for the negligible error probability. We omit the details.

F.2 The Uniform Hardcore Lemma for Computational Indistinguishability

We state a uniform version of the hardcore lemma for computational indistinguishability.

Theorem 7 (Uniform Hardcore Lemma for Computational Indistinguishability). Let S ≡
S(S) and T ≡ T(T ) be cc-stateless systems, with respective efficient implementations AS and AT.
Furthermore, assume that for some ε ∈ [0, 1) (such that 1− ε is noticeable),

∆poly(S,T) ≤ ε.
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For all noticeable ζ1 > 0, all ζ2 = 2−poly(k) > 0, and all 0 < γ ≤ 1
2 (such that 2ζ1

1−ε + ζ2 ≤ γ
4 and

1− ε− ζ1− ζ2 is noticeable), and for all polynomial-time q′-query (uniform) oracle distinguishers D(·,·),
there exist measures MS and MT such that µ(MS) ≥ 1 − ε and µ(MT) ≥ 1 − ε and the following
properties hold:

(i) There exist (ζ1, ζ2)-samplers OS and OT for MS and AS as well as for MT and AT, respectively,
with length ` := max{sAS

(ψhc · q′), sAT
(ψhc · q′)}. Furthermore, if both S and T are random

functions, then both samplers can be made error-less with ψhc := 256 · γ−2 · (1− ε)−3.

(ii) For S′ $←MS and T ′ $←MT,

∆DOS,OT (S(S′),T(T ′)) ≤ 13γ.

Assume that Theorem 7 is false, that is:

There exist noticeable ζ1 > 0, ζ2 = 2−poly(n) > 0, and 0 < γ ≤ 1
2 (such that 2ζ1

1−ε + ζ2 ≤ γ
4

and 1 − ε − ζ1 − ζ2 is noticeable), a polynomially bounded q′, and an efficient q′-query oracle
distinguisher D∗ = (D∗)(·,·) which satisfies

∆(D∗)OS,OT (S(S′),T(T ′)) > 13γ

for all measuresMS andMT, both with density at least 1− ε, admitting (ζ1, ζ2)-state-samplers

OS and OT for the corresponding implementations AS and AT with length `, and for S′ $←MS,

T ′ $←MT.

Then, we prove that for the cc-stateless system-bit pair (F, B) defined as in the proof of Theorem 2,
there exists an efficient q′-query oracle adversary A∗ = (A∗)(·) such that for all measuresM for (F, B)
with density at least 1− ε admitting a (ζ1, ζ2)-state-sampler O for A(F,B) with length `,

Guess(A
∗)O(B′ |F(X ′, B′)) > γ

for (X ′, B′) $←M, except with negligible probability. As this suffices to contradict the uniform HCL for
the system-bit pair (F, B) (Theorem 6),18 there exists a uniform polynomial-time distinguisher D such
that

∆D(S,T) ≥ GuessD(B |F) > ε,

contradicting the indistinguishability of S and T.
The adversary A∗, given oracle access to the sampler O forM, proceeds as follows: It first produces

an estimate p0 of the probability p0 that B′ = 0 using O. Then, if B′ takes a value b ∈ {0, 1} with
probability substantially larger than 1

2 , it outputs b. Otherwise, it simply lets the distinguisher D∗

interact with the given system F(X ′, B′), with oracles OS and OT which are (ζ1, ζ2)-samplers for the
measures MS and MT defined as

MS(s) :=
ε

ε+ 3γ(1− ε) · M0(s) +
3γ(1− ε)

ε+ 3γ(1− ε)

MT(t) :=
ε

ε+ 3γ(1− ε) · M1(t) +
3γ(1− ε)

ε+ 3γ(1− ε) .

whereM0 andM1 as in the proof of Theorem 2. The sampler OS samples ((σ1, b1), z1), ((σ2, b2), z2), . . .

from O until bi = 0 is satisfied, and then (σi,
ε

ε+3γ(1−ε)zi + 3γ(1−ε)
ε+2δ(1−ε)) is output. If after n attempts

18 As discussed in the proof of Theorem 6, the final adversary can be modified to compensate for a negligible error
probability.
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no pair with bi = 0 is returned, then it outputs (⊥, 1). (For MT the sampler OT symmetrically uses
bi = 1.) This yields, along the same lines as in the discussion at the end of the proof of Theorem 2,
(ζ1, ζ2)-samplers for both measures, provided that a pair with bi = 0 (for OS) or bi = 1 (for OT) occurs
within the n samples from O.

Finally, A∗ determines (using an estimate with an appropriate error) whether the probability that
(D∗)OS,OT outputs the correct bit is at least 1

2 . In the affirmative case, A∗ returns the output bit of
(D∗)OS,OT , whereas otherwise its output bit is flipped before its returned.

F.3 Security Amplification for Weak PRPs

A uniform version of Theorem 4 can be given for the slightly weaker result that the cascade of m
instances of a (two-sided) ε-PRP E = {Ek}k∈{0,1}n is an (εm +m(1− ε)εm−1 + ν)-(two-sided) PRP for

a negligible function ν in the security parameter n, as long as ε ≤ 1− 1
nO(1) .

More concretely, assume that we are given a cc-stateless random permutation Q ≡ Q(Q) (with efficient
implementation AQ) and a URP P ≡ P(P ) (with canonical implementation AP), both with the same
domain. Furthermore, let D be a polynomial-time distinguisher such that, for m independent instances
Q1, . . . ,Qm of Q,

∆D(Q1 B · · ·B Qm,P) > εm +m(1− ε)εm−1 + γ(n),

for a noticeable function γ and for infinitely many values of the security parameter n. Then, we provide
a polynomial-time (oracle) distinguisher D′ with the following guarantee: For all measures MQ for Q
and MP for P, both with density at least 1 − ε, and both admitting error-less samplers OQ and OP

with polynomial-length for the respective efficient implementations, we have

∆D′OQ,OP
(Q(Q′),P(P ′)) > γ′(n),

for a noticeable function γ′, Q′ $← MQ, and P ′ $← MP. It is not hard to see that this contradicts
Theorem 7, since (by an appropriate choice of parameters) there must be measures for Q and P, with

density 1− ε and with corresponding error-less samplers, for which ∆D′OQ,OP
(Q(Q′),P(P ′)) ≤ γ′(n).

The distinguisher D′ operates as follows, given S ∈ {Q(Q′),P(P ′)}. It starts by setting G := ∅, issuing
m queries to OQ, obtaining pairs (σi, zi), and for each i ∈ {1, . . . ,m} it adds i to G with probability zi.
Furthermore, it picks an index i∗ uniformly from {1, . . . ,m}, Then, if i∗ ∈ G, it behaves as

D(C(S1, . . . , Si∗−i, ·, Si∗+1, . . . , Sm))

and otherwise just outputs D(C(S1, . . . , Sm)), where, for all i ∈ {1, . . . ,m}, we have Si := P(P ′i ) for

P ′i
$← PMP

if i ∈ G and i < i∗, and Si := AQ[σi] otherwise.
In particular, P(P ′i ) is simulated as AP[Σ], where Σ is generated by repeating at most (n +

log(m))/ log
(
1
ε

)
the following: First (σ, z)

$← OP is sampled, and then Σ := σ is output with prob-
ability z. If no attempts outputs Σ, we set Σ := ⊥. This procedure outputs a state with the correct
distribution, except with probability 2−n

m , and hence the probability that it ever outputs a state with
the wrong distribution is at most 2−n.

Remark 4. We finally remark that our argument for decreasing the bound by an multiplying with an
additional factor ε seems to be inherently non-uniform, and we are not aware how to achieve this
(slightly) stronger statement in the uniform setting.

.
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