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Solution Exercise 8

Changing the Distribution of Bit-Guessing Problems

Recall the solution to Exercise 1.3 a): We defined the set X* := {z € X' |Px(z) > Py (x)}
and proved that 0(X,X’) = Pr[X € X*] — Pr[X’ € X*]. Stated differently, X' is the
set of elementary events and X* C X is a particular event and we write §(X,X’) =
Pr¥[x*] — Pr¥'[X*]. As explained in that solution, the maximum likelihood method
allowed us to derive this event X* which maximizes the term Pr* [X*] — Pr™® [X*]. Briefly,
adding an additional element x € X ~\ X* to the set X* would only decrease the term
(because Px(r) — Px/(z) < 0) and also removing an element from the set X* would only
decrease the term (because Px(z) — Px/(x) > 0).

More generally, for two probability spaces (2, F,Px) and (2, F,Px/) we have that

3(X,X') = sup [Pr*[B] — Pr¥'[B]|,
BeF
which is another common formulation of the statistical distance. (The text above actually
is the proof for the special case in which we have the (finite) sample space ? = X and
event set F = 2%, i.e., full information. This is the typical case in this lecture.)

It is not hard to see that for any event A € F we have

Pr¥[A] — Pr¥[A] < sup (PrX 8] — Pr’ [B]) < sup [Pr¥[B] — Pr¥’ [B]‘ = 5(X, X').
BeF BeF

Exercise 4.4 in the lecture notes asks to show that for a bit-guessing problem (.S, B) and
a distinguisher D for it, if one changes the instance distribution of (S, B) by at most
d in terms of statistical distance, then the performance of D changes by at most 2d.
The performance of D is measured in terms of its advantage A" ((S, B)) Changing the
instance distribution of (S, B) as described above means considering a new bit-guessing
problem (S, B’) such that d = 6((S, B), (S’, B')). We assume without loss of generality
that the output bit B of S is a deterministic function of S and thus the statistical distance
of 6((S, f(5)), (S, £(S")) is no greater than §(S,S’) as we know from a previous exercise.

In summary: what we want to prove is in this case
AP((8,B)) = AP((S",B')) +2-46(S,5").

Consider the random experiment D(S, B), i.e., a distinguisher D interacting with system S
(which outputs bit B) and outputs a guess Z, as a probability space where the elementary
events correspond to sampling D and sampling S. All properties, including the event
A =7 = B are deterministic functions when given these (sampled) problem instance and
distinguisher. From subtask a), we conclude that

AP((8,B)) —AP((8',B")) =2-PrPEB [z = B| —1— (2. PP B[ 7/ = B - 1)
= 2. (PrPEB) 4] — PrPE B 4))
<2-6((D,S),(D,S")) <2-4§(5,9).



Note that Z = B and Z’ = B’ denote the same event in the two experiments (expressed
as a function of D and S)} The final step that §((D, S), (D, S")) < (S, S") follows from
a simple property of the statistical distance (analog to one of the properties proven on the
previous exercise sheet) since by definition of the random experiment, D and S (resp. S’)
are sampled independently.

8.2 Amplifying the Performance of a Worst-Case Solver
Let X; fori € {1,...,q} be the binary random variable that is 1 if the ith invocation of S returns

the correct bit. Since S has performance €, we have p :== Pr[X; = 1] = & + 3. Note that all X;
are independent and that the solver T" outputs the wrong bit if and only if S outputs more wrong
than correct bits. That is, the probability that T" outputs the wrong bit is Pr [23:1 X; < %]
Let o == § =p— % We then obtain for the probability that T outputs the wrong bit using
Hoeffding’s inequality

q
Pr [Z X; < g
=1

For ¢ > E% . log%, we have

-

=Pr [ X;i<(p-— oz)q] < 720 = m1/2,
=1

o—I/2 < o~ 108(2/8) _ Jog(6/2) _ g

)

Hence, the success probability of T' for such ¢ is at least 1 — §, and the performance of T is at

least 1 — 4.

8.3 The Next Bit Test

Recall that for an integer i the notation a’ denotes the sequence a1, .. ., a;, and that we denote its
concatenation with another sequence b/ (namely, the sequence a1, ..., a;, b1, ... ,bj) as a'b. For
this task we further introduce the following notation: for integers i < j, we write a’*7 to denote
the sequence a;, @jt1,...,a; (note that a’** would correspond to the empty sequence). We now
describe how to construct a predictor P;, with ¢ € {1,...,¢}, for the i-th bit of an arbitrarily
distributed bit-string X*. First, P; receives the (partial) bit-string X*~!. Then it samples the
bit-string U**¢ uniformly at random (i.e., each bit Uj, ..., Uy is distributed independently and
uniformly at random). P; then proceeds by invoking D on input the bit-string X*~! U?:*. Upon
D outputting a guess bit Z, FP; outputs as its guess for X; the bit Z & U;.

Before analyzing the advantage of the predictor F;, let introduce the following hybrid sequences:

Hk = Xk‘ Uk+1:£ (1)
Note that for the extreme cases we have

Hy=U’ and H;=X" (2)

!This means that we can identify the subset of pairs of deterministic systems from the product space D x S
for which the output bit of the distinguisher equals the bit of the bit-guessing problem.



Then for any i € {1,...,¢} we have:
AP (X1 X)) = 2- Pr (TR 7 = X 1
—=9.prli (Xifl,Xi)[Z U =X;]—1

—2. (PrP" WXz =X, @ U | U = X -

DN =

" 1
+ P XX 7 = X e U | Us # X - 5) 1
— pPXTIX Ui+1;ff)[Z = 0] + PP (XiflyiUiJrl:Z)[Z

— PI.D(XifleH»l:[)[Z _ 1} _ PrD(Xi—l X; Ui+l:£)[Z

-1
1]

_ AD(Xi—l X’L Ui+1:é,Xi_1YiUH—1:£>.

Now consider a (probabilistic) system S which outputs the sequence X~ U i+1:£ Recall from
Exercise 1.3 b) that for a bit B correlated with S and an independent and uniformly distributed
bit U, we have

AP((8,B),(S,U)) = % -A((S,B), (S, B)). (3)

Therefore, since X; is indeed correlated with .S, whereas U; is independent and uniformly dis-
tributed, from we get

AD(Xi—l X’L Ui-‘—l:f Xi—l ZUi-FlIZ) — 2 . AD(XI Ui+1 ¥4 Xi—l Ui:f)'
Putting things together, using we have
AP (X1 X)) =2 AP(H, HL ).

Finally, using (a slight variation of) Lemma 2.2 and , we have

14 l
YOAR((XTL X)) =2 ) AP(H, H ) = 2- AP(H, H) = 2 AP (XU,
=1 =1

and thus it follows that not all predictors FP; can have advantage less than % - AP(XEUY).

Turned around, this means that there exists an i € {1,...,¢} and a predictor P; for X* such

that

APi ((Xz_l,XZ)) > % . AD<XE7U£).
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