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Solution Exercise 8

8.1 Changing the Distribution of Bit-Guessing Problems

a) Recall the solution to Exercise 1.3 a): We defined the set X ∗ := {x ∈ X |PX(x) ≥ PY (x)}
and proved that δ(X,X ′) = Pr[X ∈ X ∗] − Pr[X ′ ∈ X ∗]. Stated differently, X is the
set of elementary events and X ∗ ⊆ X is a particular event and we write δ(X,X ′) =
PrX [X ∗] − PrX

′
[X ∗]. As explained in that solution, the maximum likelihood method

allowed us to derive this event X ∗ which maximizes the term PrX [X ∗]−PrX
′
[X ∗]. Briefly,

adding an additional element x ∈ X r X ∗ to the set X ∗ would only decrease the term
(because PX(x)− PX′(x) < 0) and also removing an element from the set X ∗ would only
decrease the term (because PX(x)− PX′(x) ≥ 0).

More generally, for two probability spaces (Ω,F ,PX) and (Ω,F ,PX′) we have that

δ(X,X ′) = sup
B∈F

∣∣∣PrX [B]− PrX
′
[B]
∣∣∣ ,

which is another common formulation of the statistical distance. (The text above actually
is the proof for the special case in which we have the (finite) sample space Ω = X and
event set F = 2Ω, i.e., full information. This is the typical case in this lecture.)

It is not hard to see that for any event A ∈ F we have

PrX [A]− PrX
′
[A] ≤ sup

B∈F

(
PrX [B]− PrX

′
[B]
)
≤ sup
B∈F

∣∣∣PrX [B]− PrX
′
[B]
∣∣∣ = δ(X,X ′).

b) Exercise 4.4 in the lecture notes asks to show that for a bit-guessing problem (S,B) and
a distinguisher D for it, if one changes the instance distribution of (S,B) by at most
d in terms of statistical distance, then the performance of D changes by at most 2d.
The performance of D is measured in terms of its advantage ΛD

(
(S,B)

)
. Changing the

instance distribution of (S,B) as described above means considering a new bit-guessing
problem (S′, B′) such that d = δ((S,B), (S′, B′)). We assume without loss of generality
that the output bit B of S is a deterministic function of S and thus the statistical distance
of δ((S, f(S)), (S′, f(S′)) is no greater than δ(S, S′) as we know from a previous exercise.

In summary: what we want to prove is in this case

ΛD
(
(S,B)

)
= ΛD

(
(S′, B′)

)
+ 2 · δ(S, S′).

Consider the random experiment D(S,B), i.e., a distinguisher D interacting with system S
(which outputs bit B) and outputs a guess Z, as a probability space where the elementary
events correspond to sampling D and sampling S. All properties, including the event
A := Z = B are deterministic functions when given these (sampled) problem instance and
distinguisher. From subtask a), we conclude that

ΛD
(
(S,B)

)
− ΛD

(
(S′, B′)

)
= 2 · PrD(S,B)[Z = B]− 1− (2 · PrD(S′,B′)[Z ′ = B′]− 1)

= 2 · (PrD(S,B)[A]− PrD(S′,B′)[A])

≤ 2 · δ((D,S), (D,S′)) ≤ 2 · δ(S, S′).



Note that Z = B and Z ′ = B′ denote the same event in the two experiments (expressed
as a function of D and S)1. The final step that δ((D,S), (D,S′)) ≤ δ(S, S′) follows from
a simple property of the statistical distance (analog to one of the properties proven on the
previous exercise sheet) since by definition of the random experiment, D and S (resp. S′)
are sampled independently.

8.2 Amplifying the Performance of a Worst-Case Solver

Let Xi for i ∈ {1, . . . , q} be the binary random variable that is 1 if the ith invocation of S returns
the correct bit. Since S has performance ε, we have p := Pr[Xi = 1] = ε

2 + 1
2 . Note that all Xi

are independent and that the solver T outputs the wrong bit if and only if S outputs more wrong
than correct bits. That is, the probability that T outputs the wrong bit is Pr

[∑q
i=1Xi <

q
2

]
.

Let α := ε
2 = p − 1

2 . We then obtain for the probability that T outputs the wrong bit using
Hoeffding’s inequality

Pr

[
q∑
i=1

Xi <
q

2

]
= Pr

[
q∑
i=1

Xi ≤ (p− α)q

]
≤ e−2α2q = e−qε

2/2.

For q ≥ 2
ε2
· log 2

δ , we have

e−qε
2/2 ≤ e− log(2/δ) = elog(δ/2) =

δ

2
.

Hence, the success probability of T for such q is at least 1− δ
2 , and the performance of T is at

least 1− δ.

8.3 The Next Bit Test

Recall that for an integer i the notation ai denotes the sequence a1, . . . , ai, and that we denote its
concatenation with another sequence bj (namely, the sequence a1, . . . , ai, b1, . . . , bj) as ai bj . For
this task we further introduce the following notation: for integers i ≤ j, we write ai : j to denote
the sequence ai, ai+1, . . . , aj (note that aj : i would correspond to the empty sequence). We now
describe how to construct a predictor Pi, with i ∈ {1, . . . , `}, for the i-th bit of an arbitrarily
distributed bit-string X`. First, Pi receives the (partial) bit-string Xi−1. Then it samples the
bit-string U i : ` uniformly at random (i.e., each bit Ui, . . . , U` is distributed independently and
uniformly at random). Pi then proceeds by invoking D on input the bit-string Xi−1 U i : `. Upon
D outputting a guess bit Z, Pi outputs as its guess for Xi the bit Z ⊕ Ui.
Before analyzing the advantage of the predictor Pi, let introduce the following hybrid sequences:

Hk := Xk Uk+1 : ` (1)

Note that for the extreme cases we have

H0 = U ` and H` = X`. (2)

1This means that we can identify the subset of pairs of deterministic systems from the product space D × S
for which the output bit of the distinguisher equals the bit of the bit-guessing problem.



Then for any i ∈ {1, . . . , `} we have:

ΛPi
(
(Xi−1, Xi)

)
= 2 · PrPi (Xi−1,Xi)[Z ′ = Xi]− 1

= 2 · PrPi (Xi−1,Xi)[Z ⊕ Ui = Xi]− 1

= 2 ·
(

PrPi (Xi−1,Xi)[Z = Xi ⊕ Ui |Ui = Xi] ·
1

2

+ PrPi (Xi−1,Xi)[Z = Xi ⊕ Ui |Ui 6= Xi] ·
1

2

)
− 1

= PrD (Xi−1Xi U
i+1 : `)[Z = 0] + PrD (Xi−1Xi U

i+1 : `)[Z = 1]− 1

= PrD (Xi−1Xi U
i+1 : `)[Z = 1]− PrD (Xi−1Xi U

i+1 : `)[Z = 1]

= ∆D(Xi−1Xi U
i+1 : `, Xi−1Xi U

i+1 : `).

Now consider a (probabilistic) system S which outputs the sequence Xi−1 U i+1 : `. Recall from
Exercise 1.3 b) that for a bit B correlated with S and an independent and uniformly distributed
bit U , we have

∆D
(
(S,B), (S,U)

)
=

1

2
·∆
(
(S,B), (S,B)

)
. (3)

Therefore, since Xi is indeed correlated with S, whereas Ui is independent and uniformly dis-
tributed, from (3) we get

∆D(Xi−1Xi U
i+1 : `, Xi−1Xi U

i+1 : `) = 2 ·∆D(Xi U i+1 : `, Xi−1 U i : `).

Putting things together, using (1) we have

ΛPi
(
(Xi−1, Xi)

)
= 2 ·∆D(Hi,Hi−1).

Finally, using (a slight variation of) Lemma 2.2 and (2), we have

∑̀
i=1

ΛPi
(
(Xi−1, Xi)

)
= 2 ·

∑̀
i=1

∆D(Hi,Hi−1) = 2 ·∆D(H`,H0) = 2 ·∆D(X`, U `),

and thus it follows that not all predictors Pi can have advantage less than 2
` · ∆

D(X`, U `).
Turned around, this means that there exists an i ∈ {1, . . . , `} and a predictor Pi for X` such
that

ΛPi
(
(Xi−1, Xi)

)
≥ 2

`
·∆D(X`, U `).
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