Information Security and Cryptography Research Group

Linking Classical and Quantum Key Agreement: Is There “Bound Information”?

Nicolas Gisin and Stefan Wolf

Advances in Cryptology — CRYPTO 2000, Lecture Notes in Computer Science, Springer-Verlag, pp. 482–500, Aug 2000.

After carrying out a protocol for quantum key agreement over a noisy quantum channel, the parties Alice and Bob must process the raw key in order to end up with identical keys about which the adversary has virtually no information. In principle, both classical and quantum protocols can be used for this processing. It is a natural question which type of protocols is more powerful. We show that the limits of tolerable noise are identical for classical and quantum protocols in many cases. More specifically, we prove that a quantum state between two parties is entangled if and only if the classical random variables resulting from optimal measurements provide some mutual classical information between the parties. In addition, we present evidence which strongly suggests that the potentials of classical and of quantum protocols are equal in every situation. An important consequence, in the purely classical regime, of such a correspondence would be the existence of a classical counterpart of so-called bound entanglement, namely “bound information” that cannot be used for generating a secret key by any protocol. This stands in sharp contrast to what was previously believed.

BibTeX Citation

@inproceedings{GisWol00,
    author       = {Nicolas Gisin and Stefan Wolf},
    title        = {Linking Classical and Quantum Key Agreement: Is There ``Bound Information''?},
    editor       = {Mihir Bellare},
    booktitle    = {Advances in Cryptology --- CRYPTO 2000},
    pages        = {482--500},
    series       = {Lecture Notes in Computer Science},
    year         = {2000},
    month        = {8},
    publisher    = {Springer-Verlag},
}

Files and Links